徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

格蘭迪級數

指数 格蘭迪級數

格蘭迪級數(Grandi's series),即1 − 1 + 1 − 1 + …,是在1703年由意大利數學家發表的,後來荷蘭數學家丹尼爾·伯努利和瑞士數學家萊昂哈德·歐拉等人也都曾研究過它。格蘭迪級數寫作 \sum_^ (-1)^n 它是一個發散級數,也因此在一般情況下,這個無窮級數是沒有和的。但若對该發散級數進行一些特別的求和處理時,就會有特定的“和”出現。格蘭迪級數的歐拉和和切薩羅和均為 \frac。 格蘭迪級數与级数1 − 2 + 3 − 4 + …有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了,他在巴塞尔问题上所做的工作,同时也引出了现在所知的狄利克雷η函数和黎曼ζ函数。.

27 关系: 卡西米爾效應发散几何级数巴塞尔问题丹尼尔·伯努利幾乎所有亚纯函数切萨罗求和玻色子约瑟夫·拉格朗日狄利克雷级数狄利克雷η函数狄利克雷核萊昂哈德·歐拉複數解析函数让·勒朗·达朗贝尔费米子费耶核黎曼ζ函數零点恩纳斯托·切萨罗正規化母函数方程求解数学家1 + 1 + 1 + 1 + …1 − 2 + 3 − 4 + …

卡西米爾效應

-- 卡西米爾效應(Casimir effect)是由荷蘭物理學家亨德里克·卡西米爾(Hendrik Casimir)於1948年提出的一種現象,此效應隨後被偵測到,並以卡西米爾為名以紀念他。其根據量子場論的「真空不空」觀念——即使沒有物質存在的真空仍有能量漲落,而提出此效應:真空中兩片中性(不帶電)的金屬板會出現吸力;這在古典理論中是不會出現的現象。这种效应只有在两物体的距离非常之小时才可以被检测到。例如,在亚微米尺度上,该效应导致的吸引力成为中性导体之间主要作用力。事实上在10纳米间隙上(大概是一个原子尺度的100倍),卡西米爾效應能产生1个大气压的压力(101.3千帕)。一对中性原子之间的范德瓦耳斯力是一种类似的效应。.

新!!: 格蘭迪級數和卡西米爾效應 · 查看更多 »

发散几何级数

数学中,幾何級數 是发散的,当且仅当 | r | ≥ 1,此稱為發散幾何級數。有时需要考虑发散级数的求和,通常利用与收敛情况相同的公式来计算发散几何级数的和:.

新!!: 格蘭迪級數和发散几何级数 · 查看更多 »

巴塞尔问题

巴塞尔问题是一个著名的数论问题,这个问题首先由在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的质数个数》(On the Number of Primes Less Than a Given Magnitude)中所采用,论文中定义了黎曼ζ函数,并证明了它的一些基本的性质。这个问题是以瑞士的第三大城市巴塞尔命名的,它是欧拉和伯努利家族的家乡。 这个问题是精确计算所有平方数的倒数的和,也就是以下级数的和: \sum_^\infin \frac.

新!!: 格蘭迪級數和巴塞尔问题 · 查看更多 »

丹尼尔·伯努利

丹尼尔·伯努利(Daniel Bernoulli,),生於荷兰格罗宁根,著名數學家,约翰·伯努利之子,為伯努利家族代表人物之一。其伯努利定律适用于沿着一条流线的稳定、非粘滞、不可压缩流,在流体力学和空气动力学中有关键性的作用。.

新!!: 格蘭迪級數和丹尼尔·伯努利 · 查看更多 »

幾乎所有

在數學中,幾乎所有(Almost all)有幾種特別的用法。 有時,「幾乎所有」一詞表示除了有限集合下的所有元素,其正式名稱為餘有限空間(cofinite set),「幾乎所有」一詞也可表示除了可數集下的所有元素,其正式名稱為餘可數集(cocountable set),參照幾乎。 簡單的例子是幾乎所有質數是奇數,事實上只有一個質數(2)不是奇數,其餘的都是奇數。 當討論到實數時,「幾乎所有」一詞有時表示除了勒貝格測度為0的集合以外的所有實數,其正式名稱為幾乎處處。此概念下,幾乎所有實數都不在康托爾集中,即使康托爾集為不可數集也是如此。 在數論中,若P(n)是一個有關正整數的性質,而若p(N)表示當n小於N時,使P(n)成立n的個數,且 (參照極限)此時可以說對於幾乎所有的正整數n,P(n)成立,正式名稱是漸進幾乎必然,表示為下式: 例如質數定理說小於或等於N的質數個數漸進等於N/ln N。因此質數的比例大約是1/ln N,在N趨近於無限大時,上式會趨近於0。因此雖然存在無窮個質數,但幾乎所有的正整數都是合數。 偶爾「幾乎所有」會用來表示測度理論的幾乎處處,或是機率理論中的幾乎一定。.

新!!: 格蘭迪級數和幾乎所有 · 查看更多 »

亚纯函数

在复分析中,一个复平面的开子集D上的亚纯函数是一个在D上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。 每个D上的亚纯函数可以表达为两个全纯函数的比(其分母不恒为0):极点也就是分母的零点。 直观的讲,一个亚纯函数是两个性质很好的(全纯)函数的比。这样的函数本身性质也很“好”,除了分式的分母为零的点,那时函数的值为无穷。 从代数的观点来看,如果D是一个连通集,则亚纯函数的集合是全纯函数的整域的分式域。这和有理数 \mathbb和整数 \mathbb的关系类似。.

新!!: 格蘭迪級數和亚纯函数 · 查看更多 »

切萨罗求和

切薩羅求和(Cesàro summation)是由義大利的數學家恩納斯托·切薩羅(Ernesto Cesàro)發明,是計算無窮級數和的方式。若一級數收斂至α,則其切薩羅和存在,其值為 α,而發散級數也可以用切薩羅求和的方式,計算出切薩羅和。.

新!!: 格蘭迪級數和切萨罗求和 · 查看更多 »

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

新!!: 格蘭迪級數和玻色子 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

新!!: 格蘭迪級數和约瑟夫·拉格朗日 · 查看更多 »

狄利克雷级数

在数学中,狄利克雷级数是如下形式的无穷级数: 其中s是一个复数,an是一个复数列。 狄利克雷级数在解析数论中有重要的地位。黎曼ζ函数和狄利克雷L函数都可以用狄利克雷级数来定义。有猜测所有的狄利克雷级数组成塞尔伯格类函数都满足广义黎曼猜想。狄利克雷级数的名称来源于数学家約翰·彼得·狄利克雷。.

新!!: 格蘭迪級數和狄利克雷级数 · 查看更多 »

狄利克雷η函数

在数学的解析数论领域,狄利克雷η函数定义为: 其中 ζ 是黎曼ζ函數。但η函数也用常来定义黎曼ζ函數。 对实部为正数的复数s,也可定义为狄利克雷级数表达式形式: 表达式仅当实部为正数时收敛。对任意复数,该表达式是一个阿贝尔和,可定义为一个整函数,并由此可知ζ函數是一个极点在s.

新!!: 格蘭迪級數和狄利克雷η函数 · 查看更多 »

狄利克雷核

在数学分析中,狄利克雷核是指函数列: e^.

新!!: 格蘭迪級數和狄利克雷核 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

新!!: 格蘭迪級數和萊昂哈德·歐拉 · 查看更多 »

複數

#重定向 复数 (数学).

新!!: 格蘭迪級數和複數 · 查看更多 »

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

新!!: 格蘭迪級數和解析函数 · 查看更多 »

让·勒朗·达朗贝尔

让·勒朗·达朗贝尔(,又譯達冷柏;),法国物理学家、数学家和天文学家。他一生在很多领域进行研究,在数学、力学、天文学、哲学、音乐和社会活动方面都有很多建树。著有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言。很多的研究成果记载于《宇宙体系的几个要点研究》中。.

新!!: 格蘭迪級數和让·勒朗·达朗贝尔 · 查看更多 »

费米子

在粒子物理學裏,费米子(fermion)是遵守费米-狄拉克统计的粒子。費米子包括所有夸克與輕子,任何由奇數個夸克或輕子組成的複合粒子,所有重子與很多種原子與原子核都是費米子。術語費米子是由保羅·狄拉克給出,紀念恩里科·費米在這領域所作的傑出貢獻。 費米子可以是基本粒子,例如電子,或者是複合粒子,例如質子、中子。根據相對論性量子場論的自旋統計定理,自旋為整數的粒子是玻色子,自旋為半整數的粒子是費米子。除了這自旋性質以外,費米子的重子數與輕子數守恆。因此,時常被引述的「自旋統計關係」實際是一種「自旋統計量子數關係」。 根據費米-狄拉克統計,對於N個全同費米子,假設將其中任意兩個費米子交換,則由於描述這量子系統的波函數具有反對稱性,波函數的正負號會改變。由於這特性,費米子遵守包利不相容原理:兩個全同費米子不能占有同樣的量子態。因此,物質具有有限體積與硬度。費米子被稱為物質的組成成分。質子、中子、電子是製成日常物質的關鍵元素。.

新!!: 格蘭迪級數和费米子 · 查看更多 »

费耶核

在数学中,费耶核(Fejér kernel)是用来表达对傅立叶级数进行切萨罗求和的结果的运算子。费耶核是非负的恒等逼近,因此能解决狄利克雷核的局限。.

新!!: 格蘭迪級數和费耶核 · 查看更多 »

黎曼ζ函數

黎曼ζ函數ζ(s)的定義如下: 設一複數s,其實數部份> 1而且: \sum_^\infin \frac 它亦可以用积分定义: 在区域上,此无穷级数收敛并为一全纯函数(其中Re表示--的实部,下同)。欧拉在1740考虑过s为正整数的情况,后来切比雪夫拓展到s>1。波恩哈德·黎曼认识到:ζ函数可以通过解析开拓来扩展到一个定义在复数域(s, s≠ 1)上的全纯函数ζ(s)。这也是黎曼猜想所研究的函数。 虽然黎曼的ζ函数被数学家认为主要和“最纯”的数学领域数论相关,它也出现在应用统计学(参看齊夫定律(Zipf's Law)和(Zipf-Mandelbrot Law))、物理,以及调音的数学理论中。.

新!!: 格蘭迪級數和黎曼ζ函數 · 查看更多 »

零点

对全纯函数f,称满足f(a).

新!!: 格蘭迪級數和零点 · 查看更多 »

恩纳斯托·切萨罗

恩纳斯托·切萨罗(Ernesto Cesàro,),意大利数学家,出生于那不勒斯。切萨罗的贡献主要集中在微分几何方面,因为在发散级数领域提出切萨罗平均和切萨罗求和而闻名。.

新!!: 格蘭迪級數和恩纳斯托·切萨罗 · 查看更多 »

正規化

物理學中,尤其是量子場論,正規化(regularization)是一項處理無限大、發散以及一些不合理表示式的方法,其方法透過引入一項輔助性的概念——正規子(regulator)。舉例來說,若短距離物理效應出現發散,則設定一項空間中最小距離\epsilon \,來解決這情形。正確的物理結果是讓正規子消失(此例是\epsilon\to 0)的極限情形,不過正規子的用意就在於當它是有限值,理論結果也是有限值的。正規化是將數學中的發散級數的可和性方法(summability methods)用在物理學問題上。 然而,理論結果通常包含了一些項,是正比於例如\frac的式子,若取極限\epsilon\to 0則會沒有良好定義。正規化是獲得一個完整、有限且有意義的結果的第一步;在量子場論,通常會接著一個相關但是獨立的技術方法稱作重整化。重整化則是基於對一些有著類似\frac表示式的物理量的要求,要求其應該等於觀測值。如此的約束條件則允許我們計算一些看似發散的物理量的有限值。.

新!!: 格蘭迪級數和正規化 · 查看更多 »

母函数

在数学中,某个序列(a_n)_ 的母函数(又称生成函数,Generating function)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法。 母函数可分为很多种,包括普通母函数、指数母函数、L级数、贝尔级数和狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。 母函数的表示一般使用解析形式,即写成关于某个形式变量x的形式幂级数。对幂级数的收敛半径中的某一点,可以求母函数在这一点的级数和。但无论如何,由于母函数是形式幂级数的一种,其级数和不一定对每个x的值都存在。 母函数方法不仅在概率论的计算中有重要地位,而且已成为组合数学中一种重要方法。此外,母函数在有限差分计算、特殊函数论等数学领域中都有着广泛的应用。 注意母函数本身并不是一个从某个定义域射到某个上域的函数,名字中的“函数”只是出于历史原因而保留。.

新!!: 格蘭迪級數和母函数 · 查看更多 »

方程求解

數學中的方程求解是指找出哪些值(可能是數、函數、集合)可以使一個方程成立,或是指出這様的解不存在。方程是兩個用等號相連的數學表示式,表示式中有一個或多個未知數,未知數為自由變數,解方程就是要找出未知數要在什麼情形下,才能使等式成立。更準確的說,方程求解不一定是要找出未知數的值,也有可能是將未知數以表示式來表示。方程的解是一組可以符合方程的未知數,也就是說若用方程的解來取代未知數,會使方程變為恆等式。 例如方程的解為,因為若將方程中x取代為,方程會變成恆等式。也可以將y視為未知數,解則為。也可以將x和y都視為未知數,此時會有許多組的解,像是或是等,所有滿足的都是上述方程的解。 依問題的不同,方程求解可能只需要找到一組可以滿足方程的解,也有可能是要找到所有的解()。有時方程會存在許多解,但要找到某種最佳解,這類的問題稱為最佳化問題,找出最佳化問題的解一般不視為方程求解。 有些情形下,方程求解會需要找到解析解,也就是以解析表達式來表達的解。有些情形下,方程求解只需要找到數值解,也就是數值分析的方法求解近似值。許多方程不存在解析解,或是沒有簡單形式的解析解,例如五次方程以及更高次的代數方程,不存在根式解(用有限次的四則運算及根號組合而成的解析解),這是由數學家尼爾斯·阿貝爾證明的。.

新!!: 格蘭迪級數和方程求解 · 查看更多 »

数学家

数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.

新!!: 格蘭迪級數和数学家 · 查看更多 »

1 + 1 + 1 + 1 + …

1 + 1 + 1 + 1 + …,亦寫作 \sum_^ n^0, \sum_^ 1^n或\sum_^ 1,是一個發散級數,表示其部份和形成的數列不會收斂。數列1n可以視為公比為1的等比級數。不同於其他公比為有理數的等比級數,此級數不但在實數下不收斂,在某些特定數字p的p進數下也不收斂。若在擴展的實數軸中,因為部份和形成的數列單調遞增且沒有上界,因此級數的值如下 此發散級數無法用切薩羅求和及阿貝爾和的求和法求和。 当出现于物理运用时,它也解释为,它是黎曼ζ函數在零点的取值。 上述二個公式在s.

新!!: 格蘭迪級數和1 + 1 + 1 + 1 + … · 查看更多 »

1 − 2 + 3 − 4 + …

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。.

新!!: 格蘭迪級數和1 − 2 + 3 − 4 + … · 查看更多 »

重定向到这里:

1 − 1 + 1 − 1 + …

传出传入
嘿!我们在Facebook上吧! »