徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

OGLE 2003-BLG-235L

指数 OGLE 2003-BLG-235L

OGLE 2003-BLG-235L是一顆位於人馬座的恆星,距離地球16,000光年。在2004年,OGLE和MOA兩個天文研究小組以重力透鏡的方式,共同在這顆恆星身上發現一顆行星,它被編為 "OGLE 2003-BLG-235Lb"。.

7 关系: 人马座引力透镜光學重力透鏡實驗光年行星OGLE 2003-BLG-235Lb恒星

人马座

人马座(Sagittarius,天文符号:♐),又稱射手座,是一个南天黄道带星座,面积867.43平方度,占全天面积的2.103%,在全天88个星座中,面积排行第十五。人马座中亮于5.5等的恒星有65颗,最亮星为箕宿三(人马座ε),视星等为1.85。每年7月7日子夜人马座中心经过上中天。.

新!!: OGLE 2003-BLG-235L和人马座 · 查看更多 »

引力透镜

引力透镜效應(gravitational lensing),根據廣義相對論,就是當背景光源发出的光在引力场(比如星系、星系團及黑洞)附近經過時,光线會像通過透鏡一樣發生彎曲。光线弯曲的程度主要取决于引力场的强弱。分析背景光源的扭曲,可以帮助研究中间作為“透镜”的引力场的性质。根据尺度与效果的不同,引力透镜效应可以分为强引力透镜效应和弱引力透镜效应。 一般从数学上来讲,面质量密度(\kappa)大于1的为强引力透镜区域,小于1的为弱引力透镜区域。在强透镜区域一般可以形成多个背景源的像,甚至圆弧(又称“爱因斯坦环”,Einstein Ring),而弱透镜区域则只产生比较小的扭曲。强透镜方法通过对爱因斯坦环的曲率和多个像的位置的分析,可以估计测量透镜天体质量。弱透镜方法通过对大量背景源像的统计分析,可以估算大尺度范围天体质量分布,并被认为是现在宇宙学中最好的测量暗物质的方法。 1980年,天文学家观测到类星体Q0957+561发出的光在它前方的一个星系的引力作用下弯曲,形成了两个一模一样的类星体的像。这是人类第一次观察到引力透镜效应。.

新!!: OGLE 2003-BLG-235L和引力透镜 · 查看更多 »

光學重力透鏡實驗

光學重力透鏡實驗(Optical Gravitational Lensing Experiment,簡稱OGLE)是波蘭華沙大學的一個天文學研究項目,其目標是以重力透鏡的方法,來尋找宇宙中的黑暗物質。研究項目於1992年開始,其間也發現了一些太陽系外行星。該計畫的主持人是華沙大學的。 這個項目所選取的目標分別為麥哲倫星雲及銀河系內的星系核球,由於中間有不少的恆星,因此在該恆星掩過目標時可作為重力透鏡使用。不少觀測均在智利的拉斯坎帕納斯天文台進行,並與美國的普林斯頓大學及卡內基學院共同進行。 而計劃的前三個階段,OGLE-I(1992-1995年)、OGLE-II(1996-2000年)和OGLE-III(2001-2009年)。OGLE-I 是計畫的試驗階段,OGLE-II 是製造設置於拉斯坎帕納斯天文台的望遠鏡。使用8個晶片的 CCD 在波蘭製造後送往智利。OGLE-III 主要是偵測重力微透鏡事件和凌日行星。而定期偵測數百萬顆恆星的副產物就是完成了至今最大的變星星表。這一階段望遠鏡巡天的四個主要方向是在銀河系核球方向、船底座方向 、大麥哲倫雲和小麥哲倫雲方向。在這個階段也以重力微透鏡法發現了第一顆行星。緊接著2009年的工程階段之後,2010年正式開始使用32個晶片的 OGLE-IV 階段。本階段主要目標是增加以重力微透鏡法偵測到的行星數量。新照相機增加的視野增加了在同一天區觀測次數的可能性。.

新!!: OGLE 2003-BLG-235L和光學重力透鏡實驗 · 查看更多 »

光年

光年(light-year)是長度單位之一,指光在真空中一年時間內傳播的距離,大約9.46兆千米(9.46千米或英里。 光年一般用於天文學中,是用來量長度很長的距離,如太陽系跟另一恆星的距離。光年不是時間的單位。 天文學中另三個常用的單位是秒差距、天文單位與光秒,一秒差距等於3.26光年,一天文單位為149,597,870,700公尺,一光秒是光一秒所走的距離為299,792,458公尺。 例如,世界上最快的飛機可以達到每小時1萬1260千米的時速(2004年11月16日,美國航空航天局(NASA)的飛機最高速度紀錄是1萬1260千米/小時),依照這樣的速度,飛越一光年的距離需要用9萬5848年。而常見的客機大約是885千米/小時,這樣飛行1光年則需要122萬0330年。目前人造的最快物體是2016年7月5日抵達木星極軌道的朱諾號(2011年8月5日發射升空),最高速度為73.61千米/秒(即約26萬5000千米/小時),這樣的速度飛越1光年的距離約需要4075年的時間。.

新!!: OGLE 2003-BLG-235L和光年 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: OGLE 2003-BLG-235L和行星 · 查看更多 »

OGLE 2003-BLG-235Lb

OGLE 2003-BLG-235Lb是一個環繞著OGLE 2003-BLG-235L的太陽系外行星。.

新!!: OGLE 2003-BLG-235L和OGLE 2003-BLG-235Lb · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: OGLE 2003-BLG-235L和恒星 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »