徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

碳化硅

指数 碳化硅

碳化硅(Silicon carbide,化學式SiC)俗称金刚砂,宝石名称钻髓,为硅与碳相键结而成的陶瓷状化合物,碳化硅在大自然以莫桑石这种稀罕的矿物的形式存在。自1893年起碳化硅粉末被大量用作磨料。将碳化硅粉末烧结可得到坚硬的陶瓷状碳化硅颗粒,并可将之用于诸如汽车刹车片、离合器和防弹背心等需要高耐用度的材料中,在诸如发光二极管、早期的无线电探测器之类的电子器件制造中也有使用。如今碳化硅被广泛用于制造高温、高压半导体。通过Lely法能生长出大块的碳化硅单晶。人造莫桑石的宝石就是通过切割由Lely法制备的大块碳化硅单晶来获得的。.

41 关系: 半导体古列尔莫·马可尼坩埚亨利·莫瓦桑化合物化学气相沉积六方先进材料石墨烯砂纸碳質球粒隕石碳星礦物立方晶系纤维锌矿热膨胀系数爱德华·古德里奇·艾奇逊發光二極管莫桑石顺丁烯二酸酐装甲護甲默奇森陨石轴承防弹衣赫雪爾太空望遠鏡钝化钻石電場陶瓷永斯·贝采利乌斯感应加热慶伯利岩

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 碳化硅和半导体 · 查看更多 »

古列尔莫·马可尼

古列尔莫·马可尼(Guglielmo Marconi,),意大利工程师,专门从事无线电设备的研制和改进;1909年诺贝尔物理学奖得主。 馬可尼在1895年春季利用电磁波作通信试验,但是向意大利政府请求资助未果。1896年在英国进行了14.4公里的通讯试验成功,并取得专利。1897年起又进行了一系列的无线电通信实验,他在伦敦成立马可尼无线电报公司。1901年12月12日,馬可尼的研究小組,在紐芬蘭接收到從英國發送出來的第一個橫跨大西洋的無線電信號。1924年受封为侯爵,成为贵族。1932年发现高频波。.

新!!: 碳化硅和古列尔莫·马可尼 · 查看更多 »

坩埚

坩埚(Crucible)是實驗室中使用的一种杯状器皿,最早使用于炼金术实验。用途是盛液体或固体进行高温加热。另外,冶金学中用来融化金属的容器也被称作坩埚。 坩埚的材料要求耐热,比较坚固,而且在高温下也不易发生化学反应。传统坩埚为陶瓷制作,现代有用石墨、白金、镍、铬等金属。有些坩埚有相同材料制作的盖子。.

新!!: 碳化硅和坩埚 · 查看更多 »

亨利·莫瓦桑

亨利·莫瓦桑(Henri Moissan,),法国化学家,获得1906年诺贝尔化学奖。 莫瓦桑长期从事无机化学的研究,他在不良的实验室条件下,首次成功地离析了元素氟(1886年);深入研究氟化物和金属氢化物的性质;1892年他发明了用於製造硼或人工鑽石的电炉,将实验室化学反应的温度成功地提高到2000摄氏度,利用它制得金属碳化物、碳化硅和人造金刚石。 莫瓦桑1886年任巴黎药学院毒物学教授,1889年起任巴黎大学科学学院教授。先后获得法国科学院、英国皇家学会、德国化学会等机构颁发的多项奖金。1907年2月20日,莫瓦桑在斯德哥尔摩颁奖典礼回来后不久,在巴黎突然死亡。.

新!!: 碳化硅和亨利·莫瓦桑 · 查看更多 »

化合物

化合物(Chemical compound)是由兩種以上的元素以固定的質量比通过化學鍵结合在一起的化學物質。化合物可以由化學反應分解為更簡單的化學物質。像甲烷(CH4)、葡萄糖(C6H12O6)、硫酸鉛(PbSO4)及二氧化碳(CO2)都是化合物。 化合物是純物質分类下的一类,与元素和混合物相对。尽管有些情况下化合物的实际情况会与上述定义背离,如组成元素随制备方法而改变,内部结构并不均一,不同核素的分布并不固定等等,但一般仍认为它们属于化合物的范畴。另外,化合物中各元素的摩尔比并不一定是整数,某一元素也可呈不同的价态,例如非整比化合物和混合价态化合物。 化學元素的單質即使由幾個原子形成雙原子分子或多原子分子(如H2, S8),也不是化合物。 除特别不活泼的稀有气体氦和氖外,其他所有稳定元素都已制成了化合物。稀有气体化合物的制备曾费了一些周折。第一個稀有气体化合物六氟合铂酸氙是在1962年才製備而得。.

新!!: 碳化硅和化合物 · 查看更多 »

化学气相沉积

化學氣相沉積(chemical vapor deposition,簡稱CVD)是一種用來產生純度高、性能好的固態材料的化學技術。半導體產業使用此技術來成長薄膜。典型的CVD製程是將晶圓(基底)暴露在一種或多種不同的前趨物下,在基底表面發生化學反應或/及化學分解來產生欲沉積的薄膜。反應過程中通常也會伴隨地產生不同的副產品,但大多會隨著氣流被帶走,而不會留在反應腔(reaction chamber)中。 微制程大都使用CVD技术来沉积不同形式的材料,包括单晶、多晶、非晶及磊晶材料。这些材料有硅、碳纤维、碳奈米纤维、奈米线、奈米碳管、SiO2、硅锗、钨、硅碳、氮化硅、氮氧化硅及各种不同的等材料。CVD制程也常用来生成合成钻石。.

新!!: 碳化硅和化学气相沉积 · 查看更多 »

六方

#重定向 六方晶系.

新!!: 碳化硅和六方 · 查看更多 »

先进材料

《先进材料》(Advanced Materials)是一本涵盖材料科学的学术周刊。期刊发表的文章经过同行评审,论文类型包括通讯、综述和特稿,内容涉及物理学、化学、生物学、纳米科学和技术、冶金学、陶瓷和生物材料。.

新!!: 碳化硅和先进材料 · 查看更多 »

石墨烯

石墨烯(Graphene)是一種由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯一直被認為是假設性的結構,無法單獨穩定存在,直至2004年,英国曼彻斯特大学物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫,成功地在實驗中從石墨中分離出石墨烯,而證實它可以單獨存在,兩人也因「在二维石墨烯材料的開創性實驗」為由,共同獲得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄卻也是最堅硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光;導熱系數高達5300 W/m·K,高於碳纳米管和金刚石,常溫下其電子遷移率超過15000 cm2/V·s,又比纳米碳管或矽晶體(monocrystalline silicon)高,而電阻率只約10-6 Ω·cm,比銅或銀更低,為目前世上電阻率最小的材料 。因為它的電阻率極低,電子的移动速度極快,因此被期待可用來發展出更薄、導電速度更快的新一代電子元件或電晶體。由於石墨烯實質上是一種透明、良好的導體,也適合用來製造透明觸控螢幕、光板、甚至是太陽能電池。 石墨烯另一個特性,是能夠在常溫下觀察到量子霍爾效應。.

新!!: 碳化硅和石墨烯 · 查看更多 »

砂纸

纸是附着有研磨颗粒的纸。它用于平整物品的表面,或去除物品表面的附著物(如舊油漆),有时也用于增加摩擦力。砂紙根據不同的粗糙程度而分成不同的號碼,以配合不同用途。.

新!!: 碳化硅和砂纸 · 查看更多 »

(Boron)是一种化学元素,化学符号为B,原子序数为5,是一种類金属。由於硼的產生完全來自于宇宙射線散裂而非恆星核合成反應,硼在太陽系與地殼的含量相當稀少。天然的硼主要存在于硼砂()矿中。.

新!!: 碳化硅和硼 · 查看更多 »

硅(Silicon,台湾、香港及澳門称為--,舊訛稱為釸,中國大陸稱為--)是一种类金属元素,化学符号為Si,原子序數為14,属于元素周期表上的IVA族。 硅原子有4个外圍电子,与同族的碳相比,硅的化学性质相對稳定,活性較低。硅是极为常见的一种元素,然而它极少以單質的形式存在於自然界,而是以复杂的硅酸盐或二氧化硅等化合物形式广泛存在于岩石、砂砾、尘土之中。在宇宙储量排名中,矽位於第八名。在地壳中,它是第二丰富的元素,佔地壳总质量25.7%,仅次于第一位的氧(49.4%)。.

新!!: 碳化硅和硅 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

新!!: 碳化硅和碳 · 查看更多 »

碳質球粒隕石

碳質球粒隕石或C球粒隕石是球粒隕石,至少有8種已知的群組和許多尚未分類的隕石屬於這一類型,它們包括許多種已知的原始隕石。C球粒隕石只佔墜落隕石總數的一小部分(4.6%)。 一些著名的碳質球粒隕石是:、默奇森隕石、奧蓋爾隕石、、、塔吉什湖隕石、和薩特磨坊隕石。.

新!!: 碳化硅和碳質球粒隕石 · 查看更多 »

碳星

碳星是大氣層內的碳比氧多,類似紅巨星 (偶爾是紅矮星) 的晚期星。這兩種元素在恆星大氣的上層結合,形成一氧化碳,消耗掉大氣中所有的氧,只留下自由的碳原子和其他的碳結合,使得恆星充滿了像"煤灰"的大氣層, 而觀測人員看見的則是醒目的紅色。 在光譜上,這類恆星的特徵非常明顯,因此早在1860年就被安吉洛·西奇在早期的天文分光學上標示出來。在一般的恆星 (像太陽的恆星) ,大氣中的氧含量都比碳多。.

新!!: 碳化硅和碳星 · 查看更多 »

礦物

物是是指在地质作用下天然形成的結晶狀纯净物(单质或化合物)。绝对的纯净物是不存在的,所以这里的纯净物是指物质化學成份相对单一的物质。矿物是组成岩石的基础(像石英、长石、方解石都是常见的造岩矿物),但礦物和岩石不同,礦物可以用其化學式表示,而岩石是由許多礦物及非礦物所合成,沒有一定的化學式。 礦物多半是非生物產生的无机化合物,一般为固体,有有序的原子結構,但也有液态的矿物,如汞(水銀)。有關礦物的精確定義尚有爭議,有爭議的是非生物產生,以及有序原子結構這二個條件。像褐鐵礦、黑曜岩等類似礦物,但沒有的物筫,會稱為準礦物。 研究礦物的自然科學稱為礦物學。世界上超過5300種,其中5,070種已由国际矿物学学会(IMA)批准過。地壳中有超過75%由是矽和氧組成,因此許多的矿物是硅酸盐矿物。礦物可以依其物理性質及化學性質區分,可以依其化學成份及晶體結構分為幾類,而在礦物形成時的溫度壓力等因素會影響其中一些性質。岩石所在的溫度、壓力及其主成份的變化,都會影響其中的礦物。也有可能礦物的主成份不變,但其中的礦物因溫度壓力改變而變化。 礦物可以用許多的物理性質來描述,而這些性質也和其化學結構及組成有關。常見的礦物物理性質有晶體結構及晶体惯态、硬度、光澤、透明度、顏色、條痕、韌性、解理、斷口、裂理(parting)及比重。進一步的特性包括對酸的反應、磁性、氣味或味道,以及放射性。 礦物可以依其主要化學成份分類,最主要的兩種分類系統分別是Strunz礦物分類及Dana礦物分類。矽酸鹽可以依其化學結構的同質多晶形性再細分為六小類。所有的矽酸鹽都有4−的矽酸根四面體,是一個矽原子和四個氧原子以四面體的方式鍵結。矽酸鹽又可以分為原矽酸鹽(orthosilicates,矽酸根沒有聚合)、二矽酸鹽(disilicates,二個矽酸根互相聚合)、环状硅酸盐(cyclosilicates,環狀的矽酸根)、链状硅酸盐(inosilicates,鏈狀的矽酸根)、层状硅酸盐(phyllosilicates,層狀的矽酸根)及網矽酸鹽(tectosilicates,三維的矽酸根結構)。其他重要的礦物分類有、、、、碳酸鹽、、。.

新!!: 碳化硅和礦物 · 查看更多 »

立方晶系

立方晶系,也叫等轴晶系,它有4个三重对称轴以及3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴。其中的3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴是晶体结晶轴。轴角α.

新!!: 碳化硅和立方晶系 · 查看更多 »

纤维锌矿

纤维锌矿或纤锌矿是一种较少见的硫化锌的矿物形式,以法国化学家查尔斯-阿道夫·武尔茨的名字命名。 其晶体结构是六方晶系的一员且包含有四面等位的锌和硫原子形成ABABAB型结构。这种结构与六方碳或者六角的钻石的结构有很大程度的关联。 纤维锌矿单胞常数为:.

新!!: 碳化硅和纤维锌矿 · 查看更多 »

热膨胀系数

热膨胀系数(Coefficient of thermal expansion,簡稱CTE)是指物质在热胀冷缩效应作用之下,几何特性随着温度的变化而发生变化的规律性系数。 实际应用中,有两种主要的热膨胀系数,分別是: 线性热膨胀系数(Coefficient of Linear Thermal Expansion,簡稱CLTE线胀系数): \alpha.

新!!: 碳化硅和热膨胀系数 · 查看更多 »

,又稱碳氫化合物(hydrocarbon),是有機化合物的一種,只由碳和氫組成。烴類包括了烷烴、烯烴、炔烴、環烴及芳烴,是許多其他有機化合物的基體。.

新!!: 碳化硅和烃 · 查看更多 »

爱德华·古德里奇·艾奇逊

爱德华·古德里奇·艾奇逊(Edward Goodrich Acheson,1856年3月9日 – 1931年7月6日),美国化学家,生于宾夕法尼亚州华盛顿。他发明了大量合成碳化硅的,此法至今仍用于碳化硅和石墨的制备。.

新!!: 碳化硅和爱德华·古德里奇·艾奇逊 · 查看更多 »

發光二極管

光二極體(Light-emitting diode,縮寫为LED)是一種能發光的半導體電子元件,透過三價與五價元素所組成的複合光源。此種電子元件早在1962年出現,早期只能夠發出低光度的紅光,被惠普買下專利後當作指示燈利用。及後發展出其他單色光的版本,時至今日,能夠發出的光已經遍及可見光、紅外線及紫外線,光度亦提高到相當高的程度。用途由初時的指示燈及顯示板等;隨著白光發光二極管的出現,近年逐漸發展至被普遍用作照明用途。 發光二極管只能夠往一個方向導通(通電),叫作正向偏置,當電流流過時,電子與電洞在其內复合而發出單色光,這叫電致發光效應,而光線的波長、顏色跟其所採用的半導體物料種類與故意摻入的元素雜質有關。具有效率高、壽命長、不易破損、反應速度快、可靠性高等傳統光源不及的優點。白光LED的發光效率近年有所進步;每千流明成本,也因為大量的資金投入使價格下降,但成本仍遠高於其他的傳統照明。雖然如此,近年仍然越來越多被用在照明用途上。 2014年凭借「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」,天野浩与赤崎勇、中村修二共同获得诺贝尔物理学奖。.

新!!: 碳化硅和發光二極管 · 查看更多 »

莫桑石

莫桑石(或稱摩星石)是天然碳化硅晶体的别称,1893年由法国化学家亨利·莫桑发现,因而得名。天然碳化硅只在一些陨石中发现过,在自然界中极其罕见,开采到的尺寸和数量也不足以用作珠宝,因此现今市面上的莫桑石基本上都是实验室中生产的。 碳化硅属于超硬材料,硬度為9.5,略低于钻石。折射率略高於鑽石(2.648~2.691),色散也佳(0.104)。相较于其他材料,它的導熱係數2.3-4.9 watt/K-cm,接近鑽石的26 watt/K-cm,價格卻為鑽石的十分之一,因此,被認為是鑽石的最佳替代品。碳化硅晶体和薄膜有许多工业用途。大颗粒的碳化硅单晶可用于生产珠宝(仿钻石)。.

新!!: 碳化硅和莫桑石 · 查看更多 »

顺丁烯二酸酐

顺丁烯二酸酐(MA),简称顺酐,或稱马来酸酐,是顺丁烯二酸的酸酐,室温下为有酸味的无色或白色固体,分子式为。顺丁烯二酸酐以前用苯的催化氧化制备,但由于价格的缘故,现在大多用正丁烷氧化法制取: 顺丁烯二酸酐可发生的反应有:.

新!!: 碳化硅和顺丁烯二酸酐 · 查看更多 »

装甲

通常都具備裝甲以抵抗破片、子彈、飛彈或砲彈的襲擊,保護載具內的人員不受敵火傷害。這類的載具包括坦克、飛行器,和船艦。民用車輛也可以附上裝甲。這些車輛包括記者、官員們的專車,或其他出入於衝突地帶或某些犯罪高漲地區的車輛,以及總統的黑頭車。裝甲車也是保全公司的常規配備,用於運鈔、運載貴重品,並減少貨物半途攔截或搶劫的風險。 除了蓄意攻擊之外,車輛上的裝甲也可以避免一些非人為的威脅。有些太空船會裝備特製的裝甲,以抵抗小型隕石或太空垃圾的碎片撞擊。甚至一般的民用飛機也會攜帶裝甲,會以類似破片護罩的形式建構在這些燃氣渦輪引擎的內壁,以避免壓縮機/渦輪解體時可能造成的傷亡或機體損壞。 車輛的設計和用途決定其所掛載的裝甲數量,通常當裝甲很重且數量過多時,會限制了車輛的機動性。 裝甲車輛有時都是在武裝衝突期間才開始訂製。在二次世界大戰,美軍的坦克組員甚至把多餘的坦克履帶焊接在他們的M4雪曼、M3李或斯圖亞特等坦克外殼上。Moran, Michael.

新!!: 碳化硅和装甲 · 查看更多 »

護甲

#重定向 防彈背心.

新!!: 碳化硅和護甲 · 查看更多 »

默奇森陨石

奇森陨石(Murchison meteorite)是一块于1969年9月28日在澳大利亚维多利亚州默奇森附近发现的陨石,属于碳质球粒陨石,质量超过100千克,成分上总铁占22.13%,水占12%,有机物含量较高。它是世界上被研究最多的陨石之一。 目前已在其中发现了超过100种氨基酸,这之中包括常见氨基酸如甘氨酸、丙氨酸和谷氨酸,也包括一些罕见的氨基酸,例如异缬氨酸和叔亮氨酸,以及二氨基酸类,一类含有两个氨基的氨基酸。进一步研究显示陨石中的氨基酸有些是对映体不平衡的,即氨基酸某一对映体的含量与另一对映体的含量不相等,对映体过量百分数不为零。曾有认为这一不均衡是由地球上的杂质造成的。1997年科学家测定了陨石中同位素的含量,发现默奇森陨石中氮-15的含量与地球相比之下较为丰富,说明这些氨基酸不是来自地球,而应是原来就存在于陨石中的。 这一发现引起了科学界对这一陨石的兴趣。默奇森陨石的这一对映体不平衡现象被广泛用于解释天然化合物的手性均一性(同手性)问题,它被认为是地球上天然化合物高度同手性的地外起源理论的证据。有理论认为,从仅有低对映体过量百分数(e.e.)的痕量手性引发剂开始,对映体的不平衡现象能通过不对称自催化作用发生扩增,而且此过程与地球上的同手性现象密切相关。2005年的一项实验证实了这个理论,在该实验中研究者以催化量的天然L-脯氨酸(e.e. 20%)为手性引发剂,成功实现了对映体不平衡的扩增,得到了以L-阿洛糖为主(e.e. 55%)的产物。该催化作用不是线性的,催化剂光学纯度只有在低于30%时产物的ee才有明显的下降,若以ee为80%的脯氨酸为催化剂,则产物ee可达>99%。 默奇森陨石中含有的有机物种类很多,各类物质的含量大致为:氨基酸17~60ppm,脂肪烃 >35ppm,芳香烃3319ppm,富勒烯 >100ppm,羧酸 >300pm,羟基酸15ppm,嘌呤类和嘧啶类1.3ppm,醇类11ppm,磺酸68ppm,膦酸2ppm。2001年在该陨石中发现了多元醇类物质。 2008年时又发现了核碱基嘌呤和嘧啶。对核碱基的碳同位素含量分析同样显示这些化合物并非来自地球。 这些发现对于更好地认识地球上生命的诞生和演化过程都具有非常重大的意义。有理论认为,地球上最初生命体形成的时期,正是大量撞击地球的天体中存在的这些化合物,给地球带来了大量的有机物,而这些有机物富集起来便构成了地球上生命的化学基础。.

新!!: 碳化硅和默奇森陨石 · 查看更多 »

轴承

軸承(bearing)香港人俗稱啤令(音譯)、台灣則稱培林,機械專有用詞;顧名思義,是承托轉軸(rotating axle)、或直線運動軸(linearly moving shaft)的機件部份,在機械中起到支撑旋轉體或直線來回運動體的作用。當其他機件在軸上彼此產生相對運動時,用來保持軸的中心位置及控制該運動的機件,就稱之為軸承。其英文造字複數詞bearings又可專門解作走珠,正是絕大部份構成整個軸承,用作可與轉軸互相滑動,及使轉軸轉動時產生的摩擦力減至最低的部件。然而其取義實主要源自其動詞to bear「承擔、承托」的意思。.

新!!: 碳化硅和轴承 · 查看更多 »

防弹衣

#重定向 防彈背心.

新!!: 碳化硅和防弹衣 · 查看更多 »

赫雪爾太空望遠鏡

赫歇尔空间天文台(Herschel Space Observatory)是歐洲太空總署的一顆空间天文卫星,已在2009年5月14日和普朗克衛星一起於位於法屬圭亞那的太空中心由亞利安五號火箭發射升空,將進入距離地球150萬公里環繞著L2拉格朗日點,直徑70萬公里的利薩如軌道(Lissajous orbit)。2013年4月29日,它因液氦冷却剂耗尽,已停止工作。 赫歇尔空间天文台原名“遠紅外線和次毫米波望遠鏡”(Far Infrared and Submillimetre Telescope,簡稱FIRST),为紀念發現紅外線的英国天文学家赫歇爾而命名为“赫歇尔空间天文台”。它將是第一個在太空中對整個遠紅外線和次毫米波進行觀測的天文台,安装有太空中最大的反射望遠鏡,直徑3.5米。他將專門蒐集來自遙遠的不知名天體的微弱光线,例如數十億光年遠的年轻星系。光線將聚焦在維持在2K低溫的三件儀器上。 2013年4月29日,赫歇尔空间天文台因為致冷劑耗盡而結束任務。.

新!!: 碳化硅和赫雪爾太空望遠鏡 · 查看更多 »

钝化

钝化()指金属表面由活泼态变化为不活泼态,使它不容易腐蚀的过程。由金属与介质自发相互作用(化学钝化),或金属通过电化学阳极氧化引起(阳极钝化)。 金属钝化會使其表面形成一层保护膜,厚几到几十纳米,钝化膜有侵蚀性阳离子难以扩散的结构,把金属与溶液隔离开,使金属溶解率大为降低。.

新!!: 碳化硅和钝化 · 查看更多 »

钻石

鑽石(古希腊文:ἀδάμας;法文、德文:Diamant;英文:Diamond),化学和工业中称为金剛石。鑽石是碳元素组成的無色晶体,為目前已知的自然存在的最硬物質。.

新!!: 碳化硅和钻石 · 查看更多 »

鈹(舊譯作鋍、鑉、鋊)是一種化學元素,符號為Be,原子序為4,屬於鹼土金屬。鈹通常在宇宙射线散裂過程中產生,是宇宙中較為稀有的元素之一。所有自然界中的鈹都與其他元素結合,形成礦物,如綠柱石(海藍寶石、祖母綠)和金綠寶石等。單質鈹呈鋼灰色,輕、硬而易碎。 在鋁、銅、鐵和鎳中加入鈹作為合金材料,可以加強其物理性質。用鈹銅合金製成的工具十分堅硬,在敲擊鋼鐵表面時也不會產生火花。由於鈹的抗彎剛度、熱穩定性、熱導率都很高,密度卻很低(只有水的1.85倍),所以適合做航空航天材料,用於導彈、航天器和衛星之中。X射線等電離輻射能夠穿透低密度和低原子量的鈹,所以在X光儀器和粒子物理學實驗中都常用鈹作為窗口材料。鈹和氧化鈹可以很好地傳導熱量,因此被用於控制器械的溫度。 在處理鈹的時候,必須使用適當的措施控制粉塵,因為吸入含鈹粉塵會引致可致命的慢性過敏性鈹中毒。.

新!!: 碳化硅和铍 · 查看更多 »

铝(Aluminium 或Aluminum)是一种化学元素,属于硼族元素,其化学符号是Al,原子序数是13。相对密度是2.70。铝是一种较软的易延展的银白色金属。铝是地壳中第三大丰度的元素(仅次于氧和硅),也是丰度最大的金属,在地球的固体表面中占约8%的质量。铝金属在化学上很活跃,因此除非在极其特殊的氧化还原环境下,一般很难找到游离态的金属铝。被发现的含铝的矿物超过270种。最主要的含铝矿石是铝土矿。 铝因其低密度以及耐腐蚀(由于钝化现象)而受到重视。利用铝及其合金制造的结构件不仅在航空航太工业中非常关键,在交通和结构材料领域也非常重要。最有用的铝化合物是它的氧化物和硫酸盐。 尽管铝在环境中广泛存在,但没有一种已知生命形式需要铝元素。.

新!!: 碳化硅和铝 · 查看更多 »

镓(Gallium,舊譯作鉫、錁)是一种化学元素,它的化学符号是Ga,原子序数是31,是一种貧金屬。 在自然界中常以微量分散于铝矾土矿、闪锌矿等矿石中。.

新!!: 碳化硅和镓 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 碳化硅和電場 · 查看更多 »

陶瓷

#重定向 陶瓷 (消歧义).

新!!: 碳化硅和陶瓷 · 查看更多 »

氩(Argon)是一种化学元素,在希臘語有「不活潑」的意思,由它的特性而來。Hiebert, E. N. Historical Remarks on the Discovery of Argon: The First Noble Gas.

新!!: 碳化硅和氩 · 查看更多 »

永斯·贝采利乌斯

永斯·雅各布·貝采利烏斯男爵(Jöns Jacob Berzelius,),又譯--、柏濟力阿斯、貝齊里烏斯、白則里,瑞典化學家。他就讀烏普薩拉大學,獲得後投身於研究工作,並先後在醫學外科學院(卡羅琳學院前身)擔任教師(無薪)和教授(有薪)。貝采利烏斯發現了鈰、硒、矽和釷這四種化學元素,成功測定幾乎所有已知化學元素的原子量,提出了同分異構物、聚合物、同素異形體和催化這些重要化學術語,提出了近似現制的元素符號系統,還在化學教育、學術機構管理、礦物學、分析化學作出貢獻;但是,他主張和活力論後來被確認是錯誤的。貝采利烏斯在1848年逝世,他被譽為現代化學發展的關鍵人物之一、以及「瑞典化學之父」,在生前以至死後均獲享多種榮譽及紀念。.

新!!: 碳化硅和永斯·贝采利乌斯 · 查看更多 »

感应加热

感应加热是一種利用電磁感應來加熱電導體(一般是金屬)的方式,會在金屬中產生渦電流,因電阻而造成金屬的焦耳加熱。感应加热器包括一個電磁鐵,其中會通過高頻的交流電,若物體有較大的磁导率,也可能會因為磁遲滯現象的損失而產生熱。使用的交流頻率依欲加熱物品的尺寸金屬種類,加熱線圈和欲加熱物品的耦合程度以及滲透深度來決定。.

新!!: 碳化硅和感应加热 · 查看更多 »

慶伯利岩

金伯利岩(Kimberlite)是一种火成岩,同时是金刚石的母岩,因此寻找钻石矿通常由寻找找金伯利岩开始。金伯利岩得名于其首次被发现的地点南非金伯利,1869年于此产出的83.5克拉(16.70g)钻石南非之星曾在该地引发了一场钻石热。国内曾将该类岩石译作角砾云母橄榄岩。.

新!!: 碳化硅和慶伯利岩 · 查看更多 »

重定向到这里:

SiC金剛砂

传出传入
嘿!我们在Facebook上吧! »