徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

干涉 (物理学)

指数 干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

105 关系: 动量基态偏振反射 (物理学)反射率叠加原理双折射參宿四发光强度吸收 (光学)坡印廷向量太阳威尔逊山天文台巨星三稜鏡干涉測量術平面镜平行四边形互相关以太位移保罗·狄拉克分光鏡傅里叶变换哥本哈根詮釋光子光子群聚光學頻譜光球光电效应光谱学光检测器矢量玻色子空間等比数列级数罗伯特·密立根电子电磁波焦距物理学相干性相位非线性光学衍射频谱角半径马克斯·普朗克譜線...诺贝尔物理学奖谱密度質點贝塞尔函数路德维·曾德尔远程通信迈克耳孙干涉仪迈克耳孙-莫雷实验迈克耳孙测星干涉仪能見度能量守恒定律阿尔伯特·爱因斯坦阿尔伯特·迈克耳孙阿瑟·康普顿阿曼德·斐索薄膜重力波 (相對論)量子力学自相关函数色散艾萨克·牛顿電場電磁波雙縫實驗透射係數透射率透镜虛像 (光學)Sinc函数折射折射率恒星楔子横波機率幅波动性波峰波形波列波函数波前波粒二象性波谷激光振动振幅惠更斯-菲涅耳原理斯涅尔定律摩尔纹愛德華·莫立散射態向量托马斯·杨普朗克黑体辐射定律 扩展索引 (55 更多) »

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

新!!: 干涉 (物理学)和动量 · 查看更多 »

基态

由量子力学创始人提出。在量子力学里,一个系统可能处于一系列量子态中的一个。这一系列的量子态依能量(能階)多少排列,其中能量最少的量子态称为基态。具有更高能量的状态称为激发态。系统一般倾向于占据能量最少的状态,所以基态是研究一个量子系统的重要方面。.

新!!: 干涉 (物理学)和基态 · 查看更多 »

偏振

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。.

新!!: 干涉 (物理学)和偏振 · 查看更多 »

反射 (物理学)

反射(英文:reflection),是一種物理現象,是指波阵面從一個介質進入另一個介質時,在两个介质的界面处,其傳播方向突然改變,而回到其來源的介質。常见的例子包括光、声波和水波的反射。反射定律指出,对于镜面反射,入射角等於反射角,即光線射入時的角度必與光線反射后的角度相等。镜面反射可以通过镜子观察到。 在声学方面,反射会引起回声,这在声纳上得到很好应用。在地质学方面,研究地震波时,反射是十分重要的部分。反射可以在水体的面波上被观察到,也可以在包括可见光在内的多种电磁波上被观察到。甚高频以及更高频的波的反射对于无线电传输和雷达十分重要。甚至硬X射线和伽马射线在角度较浅时,也可以被“擦边”镜反射。.

新!!: 干涉 (物理学)和反射 (物理学) · 查看更多 »

反射率

反射率(Reflectivity或Reflectance)是在一个界面反射中,反射波與入射波功率的比值。与之相对应的概念是反射系数,定义为电磁波入射量与反射量的比值。.

新!!: 干涉 (物理学)和反射率 · 查看更多 »

叠加原理

在物理学与系统理论中,叠加原理(superposition principle),也叫叠加性质(superposition property),说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之代数和。” 从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。 用数学的话讲,对所有线性系统 F(x).

新!!: 干涉 (物理学)和叠加原理 · 查看更多 »

双折射

雙折射現象,光學現象的一種,可以用光的橫波性質來解釋。當光照射到各向異性晶體(單軸晶體,如方解石、石英、紅寶石等)時,發生兩個不同方向的折射;對於單光材料來說,當光偏振方向垂直於光軸時,光所感受到的折射率為尋常光折射率,稱為o光(ordinary ray、尋常光),另一束光的偏振方向平行於光軸則稱為e光(extraordinary ray、非尋常光),這兩束光都是偏振光,當尋常光折射率大於非尋常光折射率時稱之正單光軸材料,反之稱負單光軸材料。光線從一個特殊的角度射入晶體是不會發生雙折射現象,這一角度稱為晶體的光軸。 不能說非尋常光不符合司乃耳定律(Snell's Law),此誤解來自於對於光以及能量的混淆,我們觀察到非尋常光的方向為「能量流(energy flow)的方向」而非「光(k vector)的方向」。 波片是這種現象的一個應用。.

新!!: 干涉 (物理学)和双折射 · 查看更多 »

參宿四

参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.

新!!: 干涉 (物理学)和參宿四 · 查看更多 »

发光强度

发光强度(Luminous intensity),在光度学中简称光强或光度。用于表示光源给定方向上单位立体角内发光强弱程度的物理量,国际单位为-zh-hans:坎德拉;zh-hk:坎德拉;zh-tw:燭光;-,符號:cd,以前又稱--、支光。 与通常测量辐射强度或测量能量强度的单位相比较,发光强度的定义考虑人的视觉因素和光学特点,是在人的视觉基础上建立起来的。.

新!!: 干涉 (物理学)和发光强度 · 查看更多 »

吸收 (光学)

吸收,在物理學上是光子的能量由另一個物體,通常是原子的電子,擁有的過程,因此電磁能會轉換成為其它的形式,例如熱能。波傳導的過程中,光線的吸收通常稱為衰減。例如,一個原子的價電子在兩個不同能階之間轉換,在這個過程中光子將被摧毀,被吸收的能量會以輻射能或熱能的形式再釋放出來。雖然在某些情況下 (通常是光學中),介質會因為穿過的波強度和飽和吸收 (或非線性吸收)發生時會改變它透明度,但通常情況下,波的吸收與強度無關 (線性吸收)。.

新!!: 干涉 (物理学)和吸收 (光学) · 查看更多 »

坡印廷向量

坡印廷向量(Poynting vector),亦称能流密度矢量,其方向為電磁能傳遞方向,大小為能流密度(单位面积的能量传输速率)。坡印廷矢量的SI单位是瓦特每平方米(W/m2)。它是以其发現者约翰·亨利·坡印廷來命名的。奧利弗·黑維塞 和尼科莱·乌诺夫亦獨立發現所謂的坡印廷向量。.

新!!: 干涉 (物理学)和坡印廷向量 · 查看更多 »

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

新!!: 干涉 (物理学)和太阳 · 查看更多 »

威尔逊山天文台

威尔逊山天文台(Mount Wilson Observatory)位于美国加利福尼亚州帕萨迪纳附近的威尔逊山,距离洛杉矶约32公里,海拔1742米,是1904年在美国天文学家喬治·海爾的领导下,由卡耐基华盛顿研究所建立的,首任台长是海爾。他在就任时将叶凯士天文台的一架40英寸(1.01米)口径的望远镜带到这里。此外该天文台拥有一台口径为2.5米(100英寸)的望远镜和一台口径为1.5米(60英寸)的望远镜,以及一架高150英尺太阳望远镜。1969年,为纪念美国天文学家海爾,威尔逊山天文台和帕洛马山天文台合并成为海爾天文台。目前威尔逊山天文台由加州大学洛杉矶分校和南加州大学合作管理。此外,佐治亚州立大学的高分辨率天文中心(CHARA)也位于这里。.

新!!: 干涉 (物理学)和威尔逊山天文台 · 查看更多 »

巨星

巨星在本質上是一顆半徑和亮度都比主序星大,但卻有相同的表面溫度的恆星Giant star, entry in Astronomy Encyclopedia, ed.

新!!: 干涉 (物理学)和巨星 · 查看更多 »

三稜鏡

三稜鏡是光學稜鏡中的一種形式,在外觀上呈現幾何的三角形,是光學稜鏡中最常見,也是一般人所熟知的,但並不是最常用到的稜鏡。三稜鏡最常用於光線的色散,這是將光線分解成為不同的光譜成分。利用不同波長的光線因為折射率不同,在折射時會偏轉不同的角度,便會造成色散的現象。這種效應也被用來對稜鏡物質進行高精密度的折射系數測量。 物質的折射系數固然在不同的波長會有所不同,但有些物質的折射系數對波長的變化比其他物質強烈(色散非常明顯)。稜鏡的頂角(在上圖中,上面的角)能夠影響到稜鏡色散時的特性。通常,要適當的選擇光線射入的角度和射出的角度,當角度接近布儒斯特角(Brewster angle)時,在折射時造成的損耗最小。 一束白光會分出不同顏色,一般就分為七種顏色,即紅、橙、黃、綠、藍、靛和紫。.

新!!: 干涉 (物理学)和三稜鏡 · 查看更多 »

干涉測量術

干涉测量术(Interferometry)是通过由波的叠加(通常为电磁波)引起的干涉现象来获取信息的技术。这项技术对于天文学、光纤、工程计量、光学计量、海洋学、地震学、光谱学及其在化学中的应用、量子力学、核物理学、粒子物理学、 等离子体物理学、遥感、、表面轮廓分析、微流控、应力与应变的测量、测速以及验光等领域的研究都非常重要。 干涉仪广泛应用于科学研究和工业生产中对微小位移、折射率以及表面平整度的测量。在干涉仪中,从单个光源发出的光会分为两束,经不同,最终交汇产生干涉。所产生的干涉图纹能够反映两束光的光程差。在科学分析中,干涉仪用于测量长度以及光学元件的形状,精度能到纳米级。它们是现有精度最高的长度测量仪器。在傅里叶变换光谱学中,干涉仪用于分析包含与物质相互作用发生吸收或散射信息的光。由两个及以上的望远镜组成,它们的信号汇合在一起,结果的分辨率与直径为元件间最大间距的望远镜的相同。.

新!!: 干涉 (物理学)和干涉測量術 · 查看更多 »

平面镜

#重定向 鏡.

新!!: 干涉 (物理学)和平面镜 · 查看更多 »

平行四边形

两组对边分别平行的四边形称为平行四边形。平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。 平行四边形并不是梯形。.

新!!: 干涉 (物理学)和平行四边形 · 查看更多 »

互相关

在统计学中,互相关有时用来表示两个随机矢量 X 和 Y 之间的协方差cov(X, Y),以与矢量 X 的“协方差”概念相区分,矢量 X 的“协方差”是 X 的各标量成分之间的协方差矩阵。 在信号处理领域中,互相关(有时也称为“互协方差”)是用来表示两个信号之间相似性的一个度量,通常通过与已知信号比较用于寻找未知信号中的特性。它是两个信号之间相对于时间的一个函数,有时也称为“滑动点积”,在模式识别以及密码分析学领域都有应用。 对于离散函数 fi 和 gi 来说,互相关定义为 其中和在整个可能的整数 j 区域取和,星号表示复共轭。对于连续信号 f(x) 和 g(x) 来说,互相关定义为 其中积分是在整个可能的 t 区域积分。 互相关实质上类似于两个函数的卷积。.

新!!: 干涉 (物理学)和互相关 · 查看更多 »

以太

以太(Luminiferous aether、aether 或 ether)或譯為光乙太,是古希腊哲学家亞里斯多德所设想的一种物质,為五元素之一。19世紀的物理學家,認為它是一種曾被假想的電磁波的傳播媒質。但後來的实验和理论表明,如果不假定“以太”的存在,很多物理现象可以有更为简单的解释。也就是说,没有任何观测证据表明“以太”存在,因此“以太”理论被科学界抛弃。.

新!!: 干涉 (物理学)和以太 · 查看更多 »

位移

在物理學裏,位移是位置的改變。假設從舊位置\mathbf\,\!改變到新位置\mathbf\,\!,則位移是\Delta\mathbf.

新!!: 干涉 (物理学)和位移 · 查看更多 »

保罗·狄拉克

保羅·埃德里安·莫里斯·狄拉克,OM,FRS(Paul Adrien Maurice Dirac,),英国理論物理學家,量子力學的奠基者之一,曾經主持劍橋大學的盧卡斯數學教授席位,並在佛羅里達州立大學度過他人生的最後十四個年頭。 狄拉克在物理學上有諸多開創性的貢獻。他統合了維爾納·海森堡的矩陣力學和埃爾溫·薛定谔的波動力學,發展出了量子力學的基本數學架構。他給出的狄拉克方程式可以描述费米子的物理行為,解釋了粒子的自旋,並且首先預測了反粒子的存在。而他在路徑積分和二次量子化也扮演了的先驅者的角色,為後來量子電動力學的發展奠定了重要的基礎。此外,他將拓扑的概念引入物理學,提出了磁單極的理論。 1933年,因為“發現了在原子理論裡很有用的新形式”(即量子力学的基本方程——薛定谔方程和狄拉克方程),狄拉克和薛丁格共同获得了诺贝尔物理学奖,是當時史上最年輕獲獎的理論物理學家。.

新!!: 干涉 (物理学)和保罗·狄拉克 · 查看更多 »

分光鏡

分光鏡為一光學儀器,可以將一束光線分成兩束,是多數干涉儀的重要組件。.

新!!: 干涉 (物理学)和分光鏡 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 干涉 (物理学)和傅里叶变换 · 查看更多 »

哥本哈根詮釋

哥本哈根詮釋(Copenhagen interpretation)是量子力學的一種詮釋。根據哥本哈根詮釋,在量子力學裏,量子系統的量子態,可以用波函數來描述,這是量子力學的一個關鍵特色,波函數是個數學函數,專門用來計算粒子在某位置或處於某種運動狀態的機率,測量的動作造成了波函數塌縮,原本的量子態機率地塌縮成一個測量所允許的量子態。 二十世紀早期,從一些關於小尺寸微觀物理的實驗裏,物理學家發現了很多新穎的量子現象。對於這些實驗結果,古典物理完全無法解釋。替而代之,物理學家提出了一些嶄新的理論。而這些理論能夠非常精確地解釋新發現的量子現象。但是,內嵌於這些經驗理論的,是一種關於小尺度真實世界的新模型。它們所給予的預測,常使物理學家覺得相當地反直覺。甚至它們的發現者都感受到極其驚訝。哥本哈根詮釋嘗試著,在實驗證據的範圍內,給予實驗結果和相關理論表述一個合理的解釋。換句話說,它試著回答一個問題:這些奇妙的實驗結果到底有什麼意義? 哥本哈根詮釋主要是由尼爾斯·波耳和維爾納·海森堡于1927年在哥本哈根合作研究时共同提出的。此詮釋延伸了由德国数学家、物理学家馬克斯·玻恩所提出的波函数的機率表述,之后发展为著名的不确定性原理。他們所提的詮釋嘗試要對一些量子力學所帶來的複雜問題提出回答,比如波粒二象性以及測量問題。此后,量子理论中的概率特性便不再是猜想,而是作为一条定律而存在了。量子论以及这条詮釋在整个自然科学以及哲学的发展和研究中都起着非常显著的作用。 哥本哈根詮釋給予了量子系統的量子行為一個精簡又易懂的解釋。1997年,在一場量子力學研討會上,舉行了一個關於詮釋論題的意向調查,根據這調查的結果,超過半數的物理學家對哥本哈根詮釋感到滿意;第二多的是多世界詮釋。雖然當前的傾向顯示出其它的詮釋也具有相當的競爭力,在20世紀期間,大多數的物理學家都願意接受哥本哈根詮釋。.

新!!: 干涉 (物理学)和哥本哈根詮釋 · 查看更多 »

光子

| mean_lifetime.

新!!: 干涉 (物理学)和光子 · 查看更多 »

光子群聚

#重定向 汉伯里·布朗及特维斯效应.

新!!: 干涉 (物理学)和光子群聚 · 查看更多 »

光學頻譜

光学频谱,简称光谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中的一部分可见光谱是电磁波谱中人眼可见的唯一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人類大脑視覺所能区别的所有颜色,譬如褐色和粉红色,其原因是粉红色并不是由单色组成,而是由多种色彩组成的。参见颜色。.

新!!: 干涉 (物理学)和光學頻譜 · 查看更多 »

光球

光球是恒星向外輻射出光線的區域。它從天體的表面向內延伸,直到氣體變得不透明的區域,大约相當於光深度(光的減弱距離以自然對數形式表示)2/3的位置。換言之,光球是天體外層對普通的光線透明,光子的平均散射次数小于1的區域。恆星輻射的總能量相當於在該半徑處氣體輻射的總能量。由於恆星沒有固體的表面(除了中子星),光球通常指的就是太陽或恆星可以被看見的視覺表面。這個字的英文源自古希臘的字根φως¨- φωτος/photos和σφαιρος/sphairos,意思就是光和球,事實上就是被觀察到表面發光的球體。.

新!!: 干涉 (物理学)和光球 · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

新!!: 干涉 (物理学)和光电效应 · 查看更多 »

光谱学

光谱学(Spectroscopy)是研究物质发射、吸收或散射的光、声或粒子来研究物质的方法。 光谱学也可以被定义为研究光和物质之间相互作用的学科。历史上,光谱学指用可见光来对物质结构的理论研究和定量和定性的分析的科学分支。但是,近来,光谱学的定义已经被扩展为一种不只用可见光,也用许多其他电磁或非电磁辐射(如微波,无线电波,X射线,电子,声子(声波)等)的新技术。阻抗光谱学则研究交流电的频率响应。 光谱学被频繁的用在物理和分析化学中,通过发射或吸收光谱来鉴定物质。一种记录光谱的仪器叫分光计。光谱学可以通过其测量或计算的物理属性或测量过程来分类。 光谱学也同样大量运用在天文学和遥感。大多数大型天文望远镜配有光谱摄制仪,用来测量天体的化学组成和物理属性,或通过测量光谱线的多普勒偏移来测量天体的速度。.

新!!: 干涉 (物理学)和光谱学 · 查看更多 »

光检测器

#重定向 光度感應器.

新!!: 干涉 (物理学)和光检测器 · 查看更多 »

矢量

#重定向 向量.

新!!: 干涉 (物理学)和矢量 · 查看更多 »

玻色子

在量子力學裡,粒子可以分為玻色子(boson)與費米子。Carroll, Sean (2007) Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 p. 43, The Teaching Company, ISBN 978-1-59803-350-2 "...boson: A force-carrying particle, as opposed to a matter particle (fermion).

新!!: 干涉 (物理学)和玻色子 · 查看更多 »

空間

間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.

新!!: 干涉 (物理学)和空間 · 查看更多 »

等比数列

等比数列,又称几何数列。是一种特殊数列。它的特点是:从第二项起,每一项与前一项的比都是一个常数。 例如數列 2,4,8,16,32,\cdots,2^,2^,\cdots。 这就是一个等比数列,因为第二项与第一项的比和第三项与第二项的比相等,都等于2,2^与2^的比也等于2。如2这样后一项与前一项的比称公比,符号为q。.

新!!: 干涉 (物理学)和等比数列 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 干涉 (物理学)和级数 · 查看更多 »

罗伯特·密立根

罗伯特·密立根(Robert Millikan,),美国物理学家,1922年IEEE爱迪生奖章得主与1923年诺贝尔物理学奖得主。1910-1917年曾以油滴實驗精确地测得出基本电荷的电荷量e的值,从而确定了电荷的不连续性,1916年曾验证了爱因斯坦的光电效应公式是正确的,并测定了普朗克常数;另外他在宇宙射线方面也做了一些工作。.

新!!: 干涉 (物理学)和罗伯特·密立根 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 干涉 (物理学)和电子 · 查看更多 »

电磁波

#重定向 电磁辐射.

新!!: 干涉 (物理学)和电磁波 · 查看更多 »

焦距

距,也稱為焦長,是光學系統中衡量光的聚集或發散的度量方式,指從透鏡中心到光聚集之焦點的距離。亦是照相機中,從鏡片光學中心到底片、CCD或CMOS等成像平面的距離。具有短焦距的光學系統比長焦距的光學系統有更佳聚集光的能力。.

新!!: 干涉 (物理学)和焦距 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 干涉 (物理学)和物理学 · 查看更多 »

相干性

在物理學裏,相干性(coherence)指的是,為了產生顯著的干涉現象,波所需具備的性質。更廣義地說,相干性描述波與自己、波與其它波之間對於某種內秉物理量的相關性質。 當兩個波彼此相互干涉時,因為相位的差異,會造成相长干涉或相消干涉。假若兩個正弦波的相位差為常數,則這兩個波的頻率必定相同,稱這兩個波「完全相干」。兩個「完全不相干」的波,例如白炽灯或太陽所發射出的光波,由於產生的干涉圖樣不穩定,無法被明顯地觀察到。在這兩種極端之間,存在著「部分相干」的波。 相干性又大致分類為時間相干性與空間相干性。時間相干性與波的頻寬有關;而空間相干性則與波源的有限尺寸有關。 波與波之間的的相干性可以用來量度。是波與波之間的干涉圖樣的輻照度對比,相干度可以從干涉可見度計算出來。.

新!!: 干涉 (物理学)和相干性 · 查看更多 »

相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

新!!: 干涉 (物理学)和相位 · 查看更多 »

非线性光学

非线性光学主要用来研究非线性的光学现象和理论。 介质产生的极化强度决定于入射光的电场强度,其作用可用多项式展开成多阶形式.在通常的弱光条件下,高阶项因为系数很小而可以忽略,此时可近似看成一种线性关系。但是在强激光场作用下(通常在108 V/m左右,由激光脉冲提供),极化强度的高阶项强度不可被忽略,非线性作用出现,从而可以实现光和光之间的相互作用。入射光的强度越高,高阶非线性效应越明显。非线性光学直到激光出现后,人们对二次谐波产生的发现才发展起来。(Peter Franken et al. at University of Michigan in 1961) 非线性光学包括光学倍频、混频、参量振荡、克尔效应、光孤子等现象。利用强度极高的飞秒激光可以产生高达上百倍的倍频效应,可以用来产生深紫外光和软 X 射线。常用于产生非线性效应的物质有铌酸锂、钽酸锂、磷酸氧鈦鉀(KTP)、磷酸二氫鉀(KDP)、偏硼酸钡(BBO)等晶体(具有高的2阶非线性系数)及稀有气体(主要用于产生高阶非线性效应)。光参量振荡(OPO)是目前产生大范围连续可调波长(波长从红外到可见光甚至紫外光)激光的唯一方法。.

新!!: 干涉 (物理学)和非线性光学 · 查看更多 »

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

新!!: 干涉 (物理学)和衍射 · 查看更多 »

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

新!!: 干涉 (物理学)和频谱 · 查看更多 »

角半径

#重定向 角直徑.

新!!: 干涉 (物理学)和角半径 · 查看更多 »

马克斯·普朗克

克斯·卡尔·恩斯特·路德维希·普朗克(Max Karl Ernst Ludwig Planck,),德国物理学家,量子力学的创始人,20世纪最重要的物理学家之一,因发现能量量子而对物理学的发展做出了重要贡献,並在1918年獲得诺贝尔物理学奖。 作为一个理论物理学家,普朗克最大的贡献是首先提出了(舊)量子论。这个理论彻底改变人类对原子與次原子的认识,正如爱因斯坦的相对论改变人类对时间和空间的认识,这两个理论一起构成了20世纪物理学的基础。 波耳、愛因斯坦與普朗克被稱為舊量子論的奠基者。.

新!!: 干涉 (物理学)和马克斯·普朗克 · 查看更多 »

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

新!!: 干涉 (物理学)和譜線 · 查看更多 »

诺贝尔物理学奖

| title.

新!!: 干涉 (物理学)和诺贝尔物理学奖 · 查看更多 »

谱密度

時間序列 x(t) 的功率谱 S_(f) 描述了信号功率在频域的分布状况。根据傅里叶分析,任何物理信号都可以分解成一些离散频率或连续范围的频谱。对特定信号或特定种类信号(包括噪声)频率内容的分析的统计平均,称作其频谱。 当信号的能量集中在一个有限时间区间的时候,尤其是总能量是有限的,就可以计算能量频谱密度。更常用的是应用于在所有时间或很长一段时间都存在的信号的功率谱密度。由于此种持续存在的信号的总能量是无穷大,功率谱密度(PSD)则是指单位时间的光谱能量分布。频谱分量的求和或积分会得到(物理过程的)总功率或(统计过程的)方差,这与帕塞瓦尔定理描述的将 x^2(t) 在时间域积分所得相同。 物理过程 x(t) 的频谱通常包含与 x 的性质相关的必要信息。比如,可以从频谱分析直接确定乐器的音高和音色。电磁波电场 E(t) 的频谱可以确定光源的颜色。从这些时间序列中得到频谱就涉及到傅里叶变换以及基于傅里叶分析的推广。许多情况下时间域不会具体用在实践中,比如在攝譜儀用散射棱镜来得到光谱,或在声音通过内耳的听觉感受器上的效应来感知的过程,所有这些都是对特定频率敏感的。 不过本文关注的是时间序列(至少在统计意义上)已知,或可以直接测量(如经麦克风采集再由电脑抽样)的情形。功率谱在与随机过程的统计研究以及物理和工程中的许多其他领域中都很重要。通常情况下,该过程是时间的函数,但也同样可以讨论空间域的数据按空間頻率分解。.

新!!: 干涉 (物理学)和谱密度 · 查看更多 »

質點

質點是一個有质量的点,在動力學中常用来代替物体。质点是一个物理抽象,也是一个理想化模型。J.L. Meriam, L.G. Kraige, "Engineering Mechanics: Dynamics," 第三版,ISBN 0471592730。.

新!!: 干涉 (物理学)和質點 · 查看更多 »

贝塞尔函数

貝索函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的貝索函数指第一类貝索函数(Bessel function of the first kind)。一般貝索函数是下列常微分方程(一般称为貝索方程)的标准解函数y(x): 这类方程的解是无法用初等函数系统地表示。 由於貝索微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用第一类貝索函数和第二类貝索函数來表示标准解函数: 注意,由於 Y_\alpha(x) 在 x.

新!!: 干涉 (物理学)和贝塞尔函数 · 查看更多 »

路德维·曾德尔

路德维·路易士·艾伯特·曾德尔(Ludwig Louis Albert Zehnder,)出生在瑞士的伊爾瑙-埃弗雷蒂孔,是瑞士的物理學家,他在1891年提出了馬赫-曾德爾干涉儀的概念,德國科學家(恩斯特·马赫之子)再加以改良而成。 路德维·曾德尔是弗赖堡大学及巴塞爾大學物理學教授威廉·伦琴的學生。伦琴也是第一個用X光拍攝人體骨骼X光片的人。.

新!!: 干涉 (物理学)和路德维·曾德尔 · 查看更多 »

远程通信

#重定向 电信.

新!!: 干涉 (物理学)和远程通信 · 查看更多 »

迈克耳孙干涉仪

迈克耳孙干涉仪(Michelson interferometer)是光学干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·迈克耳孙。迈克耳孙干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。迈克耳孙和爱德华·莫雷使用这种干涉仪于1887年进行了著名的迈克耳孙-莫雷实验,证实了以太的不存在,启发了狭义相对论。.

新!!: 干涉 (物理学)和迈克耳孙干涉仪 · 查看更多 »

迈克耳孙-莫雷实验

#重定向 迈克耳孙-莫雷实验.

新!!: 干涉 (物理学)和迈克耳孙-莫雷实验 · 查看更多 »

迈克耳孙测星干涉仪

迈克耳孙测星干涉仪(Michelson stellar interferometer)是最早被提出并建造的天文干涉仪之一,它的概念首先由美国物理学家阿尔伯特·迈克耳孙和法国物理学家阿曼德·斐索在1890年提出,而迈克耳孙和美国天文学家弗朗西斯·皮斯於1920年在威尔逊山天文台使用它首次测量了恒星的角直径。 在此之前,恒星尺寸(角直径)的测量是天文学上的一大难题,这是由于传统光学天文望远镜的角分辨率受到物镜口径的限制,即使是人类能制造的最大的天文望远镜,其角分辨率也大约只有10-2弧度秒的量级,无法达到测量普通恒星所需的分辨率。迈克耳孙测星干涉仪利用干涉条纹的可见度随扩展光源的线度增加而下降的原理,将恒星看作一个平面非相干光源,从而可以很巧妙地测量恒星的角直径。 最初设计的迈克耳孙测星干涉仪的长度约为6米,架设在口径为2.5米的胡克望远镜之上。其中两面平面镜M1、M2的最大间距为6.1米,并且是可调的;而平面镜M3、M4的位置是固定的,等於1.14米。当有星光入射到干涉仪上时,两组平面镜所构成的光路是等光程的,从而会形成等间距的干涉直条纹,而条纹间距为 这里f\,是望远镜的焦距,d\,是平面镜M3和M4之间的距离。而平面镜M1和M2之间的距离相当於扩展光源的线度,当M1和M2靠得很近时干涉条纹的衬比度接近於1,随着两者间距增加衬比度会逐渐下降为零。如果认为恒星是一个角直径为2\alpha\,,光强均匀分布的圆形光源,其可见度由下面公式给出 其中u.

新!!: 干涉 (物理学)和迈克耳孙测星干涉仪 · 查看更多 »

能見度

能見度又稱可見度,指觀察者離物體多遠時仍然可以清楚看見該物體。氣象學中,能見度被定義為大氣的透明度,因此在氣象學裏,同一空氣的能見度在白天和晚上是一樣的。能見度的單位一般為米或公里。能見度對於航空、航海和陸上運輸都非常重要。.

新!!: 干涉 (物理学)和能見度 · 查看更多 »

能量守恒定律

能量守恒定律(law of conservation of energy)闡明,孤立系统的总能量 E 保持不变。如果一个系统处于孤立环境,即不能有任何能量或質量从该系统输入或输出。能量不能无故生成,也不能无故摧毁,但它能够改变形式,例如,在炸弹爆炸的过程中,化学能可以转化为动能。 从能量守恒定律可以推导出第一類永动机永远無法實現。没有任何孤立系统能够持續對外提供能量。.

新!!: 干涉 (物理学)和能量守恒定律 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

新!!: 干涉 (物理学)和阿尔伯特·爱因斯坦 · 查看更多 »

阿尔伯特·迈克耳孙

阿尔伯特·亚伯拉罕·迈克耳孙(Albert Abraham Michelson,),又譯「邁克生」、「迈克耳逊」,波蘭裔美国藉物理学家,以测量光速而闻名,尤其是迈克耳孙-莫雷实验。1907年诺贝尔物理学奖获得者。.

新!!: 干涉 (物理学)和阿尔伯特·迈克耳孙 · 查看更多 »

阿瑟·康普顿

阿瑟·霍利·康普顿(Arthur Holly Compton,),美国物理学家,因发现展示电磁辐射粒子性的康普顿效应而于1927年获得诺贝尔物理学奖。那时的人们尽管已经清楚理解光的波动性,但仍不能完全接受光同时具有波动性与粒子性。因而这一发现轰动一时。他在曼哈顿计划中领导冶金实验室的事迹,以及在1945至1953年间担任圣路易斯华盛顿大学校长的经历也为人熟知。 1919年,康普顿成为首批受美国国家科学研究委员会资助出外留学的学生,前往英国剑桥大学的卡文迪许实验室深造。在那里,他研究了伽马射线的散射与吸收。他在日后发现的康普顿效应正是基于这些研究。此外,他还利用X射线研究了铁磁性与宇宙射线,并发现:铁磁性是电子自旋排列的宏观表现;宇宙射线主要由带正电的粒子组成。 第二次世界大战期间,康普顿是曼哈顿计划的关键人物。他的报告对于计划的实施非常重要。1942年,他成为冶金实验室的领导人,负责建造将铀转化为钚的核反应堆、寻找将钚从铀中分离出来的方法以及设计原子弹等工作。康普顿监理了恩里科·费米建造世界首个核反应堆芝加哥1号堆的过程,该反应堆在1942年12月2日开始试运行。冶金实验室还负责了位于橡树岭国家实验室的的设计与实现。钚则在1945年自汉福德区的中开始制造出来。 战后,康普顿成为圣路易斯华盛顿大学的校长。在其任期内,学校正式废止本科生中的种族隔离,任命了首任女性正教授,又录取了大量回国老兵。.

新!!: 干涉 (物理学)和阿瑟·康普顿 · 查看更多 »

阿曼德·斐索

阿曼德·斐索(Armand Hippolyte Louis Fizeau,),法国物理學家。.

新!!: 干涉 (物理学)和阿曼德·斐索 · 查看更多 »

薄膜

薄膜材料是指厚度介于单原子到几毫米间的薄金属或有机物层。电子半导体功能器件和光学镀膜是薄膜技术的主要应用。 一个很为人们熟知的表面技术的应用是家用的镜子:为了形成反射表面在镜子的背面常常镀上一层金属,镀银操作广泛应用于镜子的制作,而低于一个纳米的极薄的镀层常常用来制作双面镜。 当光学用薄膜材料(例如减反射膜消反射膜等)由数个不同厚度不同反射率的薄层复合而成时,他们的光学性能可以得到加强。相似结构的由不同金属薄层组成的周期性排列的薄膜会形成所谓的超晶格结果。在超晶格结构中,电子的运动被限制在二维空间中而不能在三维空间中运动于是产生了量子阱效应。 薄膜技术有很广泛的应用。长久以来的研究已经将铁磁薄膜用于计算机存储设备,医药品,制造薄膜电池,染料敏化太阳能电池等。 陶瓷薄膜也有很广泛的应用。由于陶瓷材料相对的高硬度使这类薄膜可以用于保护衬底免受腐蚀氧化以及磨损的危害。在刀具上陶瓷薄膜有着尤其显著的功用,使用陶瓷薄膜的刀具的使用寿命可以有效提升几个数量级。 现阶段对于一种被称为多组分非晶重金属阳离子氧化物的新型的无机氧化物材料的研究正在进行,这种材料有望用于制造稳定,环保,低成本的透明晶体管。.

新!!: 干涉 (物理学)和薄膜 · 查看更多 »

重力波 (相對論)

在廣義相對論裡,重力波是時空的漣漪。當投擲石頭到池塘裡時,會在池塘表面產生漣漪,從石頭入水的位置向外傳播。當帶質量物體呈加速度運動時,會在時空產生漣漪,從帶質量物體位置向外傳播,這時空的漣漪就是重力波。由於廣義相對論限制了引力相互作用的傳播速度為光速,因此會產生重力波的現象。相反地說,牛頓重力理論中的交互作用是以無限的速度傳播,所以在這一理論下並不存在重力波。 由於重力波與物質彼此之間的相互作用非常微弱,重力波很不容易被傳播途中的物質所改變,因此重力波是優良的信息載子,能夠從宇宙遙遠的那一端真實地傳遞寶貴信息過來給人們觀測。重力波天文學是觀測天文學的一門新興分支。重力波天文學利用重力波來對於劇烈天文事件所製成的重力波波源進行數據收集,例如,像白矮星、中子星與黑洞一類的星體所組成的聯星,另外,超新星與大爆炸也是劇烈天文事件所製成的重力波波源。原則而言,天文學者可以利用重力波觀測到超新星的核心,或者大爆炸的最初幾分之一秒,利用電磁波無法觀測到這些重要天文事件。 阿爾伯特·愛因斯坦根據廣義相對論於1916年預言了重力波的存在。1974年,拉塞爾·赫爾斯和約瑟夫·泰勒發現赫爾斯-泰勒脈衝雙星。這雙星系統在互相公轉時,由於不斷發射重力波而失去能量,因此逐漸相互靠近,這現象為重力波的存在提供了首個間接證據。科學家也利用重力波探測器來觀測重力波現象,如簡稱LIGO的激光干涉重力波天文台。2016年2月11日,LIGO科學團隊與處女座干涉儀團隊共同宣布,人类於2015年9月14日首次直接探测到重力波,其源自於双黑洞合併。之後,又陸續多次探測到重力波事件,特別是於2017年8月17日首次探測到源自於雙中子星合併的重力波事件GW170817。除了LIGO以外,另外還有幾所重力波天文台正在建造。2017年,萊納·魏斯、巴里·巴利許與基普·索恩因成功探測到重力波,而獲得諾貝爾物理學獎。.

新!!: 干涉 (物理学)和重力波 (相對論) · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

新!!: 干涉 (物理学)和量子力学 · 查看更多 »

自相关函数

自相关(Autocorrelation),也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。它是找出重复模式(如被噪声掩盖的周期信号),或识别隐含在信号谐波频率中消失的基頻的数学工具。它常用于信号处理中,用来分析函数或一系列值,如時域信号。.

新!!: 干涉 (物理学)和自相关函数 · 查看更多 »

色散

#重定向 色散 (光學).

新!!: 干涉 (物理学)和色散 · 查看更多 »

艾萨克·牛顿

艾萨克·牛顿爵士,(Sir Isaac Newton,,英語發音)是一位英格兰物理学家、数学家、天文学家、自然哲学家和煉金術士。1687年他发表《自然哲学的数学原理》,阐述了万有引力和三大运动定律,奠定了此后三个世纪--力学和天文学的基础,成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心学说提供了强而有力的理论支持,并推动了科学革命。 在力学上,牛顿阐明了动量和角动量守恒的原理。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。 在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。 在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,在被调查的皇家学会院士和网民投票中,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。.

新!!: 干涉 (物理学)和艾萨克·牛顿 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 干涉 (物理学)和電場 · 查看更多 »

電磁波

#重定向 电磁辐射.

新!!: 干涉 (物理学)和電磁波 · 查看更多 »

雙縫實驗

在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

新!!: 干涉 (物理学)和雙縫實驗 · 查看更多 »

透射係數

透射係數專門表示透射波的振幅或強度,相對於入射波的振幅或強度。當波從一種介質傳播到另外一種不同的介質的時候,當波傳播的介質有不連續處的時候,就會有透射與反射的產生。原本傳播的波,稱為入射波。透過不連續處的波,稱為透射波。沒有透過不連續處,而反向傳播的波,稱為反射波。 在不同的學術界,透射係數有不同的定義。.

新!!: 干涉 (物理学)和透射係數 · 查看更多 »

透射率

#重定向 透射係數.

新!!: 干涉 (物理学)和透射率 · 查看更多 »

透镜

本条目介绍的是光學設備,其他領域的透鏡不在此處討論。 透鏡是一種將光線聚合或分散的設備,通常是由一片玻璃構成,但用於其他電磁輻射的類似設備通常也稱為透鏡,例如:由石蠟製成的微波透鏡,用玻璃、树脂或水晶等透明材料制成的放大镜、眼镜等,也都是透镜。 透镜有两类,中间厚边缘薄的叫凸透镜,中间薄边缘厚的叫凹透镜,比球面半径小许多的透镜叫薄透镜,薄透镜的几何中心叫透镜的鏡心。 透镜并不一定是固定形状,使用满足要求的材料来制作可以改变形状的透镜可以提高清晰度,景深,不过通过使用镜头组也能达到相同的效果,就如澳大利亚摄影师吉姆·弗雷泽(Jim Frazier)做的那样,这样做是等效的。如果你有适合形状的壳来封存洁净的可增减的水,那就能做到。.

新!!: 干涉 (物理学)和透镜 · 查看更多 »

虛像 (光學)

虛像(virtual image)指物體發出的光線經折射或反射後,如果為發散光線,其反向延長線相交而成的像,例如,平面鏡、眼鏡所成的像是虛像。 光線到達面鏡(如平面鏡)時會發生反射,經過透鏡(如凸透鏡、凹透鏡)時會發生折射。折射或反射後,光路改變,人看到折射或反射後的光線,會感覺光線來自其反向延長線交點的位置(如圖)。虛像所在的位置並沒有實際物體,也沒有光線匯聚,故虛像只能在鏡中看到,而無法用光屏承接。.

新!!: 干涉 (物理学)和虛像 (光學) · 查看更多 »

Sinc函数

sinc函数,用 \mathrm(x)\, 表示,有两个定义,有时区分为归一化sinc函数和非归一化的sinc函数。它们都是正弦函数和单调递减函数 1/x的乘积:.

新!!: 干涉 (物理学)和Sinc函数 · 查看更多 »

折射

折射(法語,英語:Refraction,德語: Refraktion, 西班牙語: Refracción),一種常見的物理現象,指當物體或波動由一種媒介斜射入另一種媒介造成速度改變而引起角度上的偏移。「折射」一定等同於「光的折射」,所以雖然光線(一種橫波)會因為「折射」的不同令光的運行方向改變,但「折射」現象並不能用以證明光線是一種波動。最普遍的例子就是用手槍瞄準,當子彈穿過水时,其角度就會因為折射而偏移。 而所謂的「屈折」,也就是「光的折射」,專指光從一種介質進入另一種具有不同折射率之介質,或者在同一種介質中折射率不同的部分運行時,由於波速的差異,使光的運行方向改變的現象。例如當一條木棒插在水裡面時,單用肉眼看會以為木棒進入水中時折曲了,這是光進入水裡面時,產生折射,才帶來這種效果。.

新!!: 干涉 (物理学)和折射 · 查看更多 »

折射率

某种介质的折射率  等于光在真空中的速度  跟光在介质中的相速度  之比: (nv.

新!!: 干涉 (物理学)和折射率 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

新!!: 干涉 (物理学)和恒星 · 查看更多 »

楔子

楔子(音ㄒㄧㄝ(xiē)),是一種簡單機械工具,由兩個斜面組成,用來將物件分開。原理主要是將楔子向下的力量轉化成對物件水平的力量。短小而闊角度的楔子能較快分開物件,常見使用楔子的工具包括斧頭及釘子等。 在製作框架木器時,若要兩根木頭垂直接合,則一根接合處鑿透方孔,另一根的接合端,則削成M形狀,插入接合後,強行釘入三角木片在M的凹處,以撐漲木頭,使接合更為緊密。這三角型的小木片,就是"楔子"。.

新!!: 干涉 (物理学)和楔子 · 查看更多 »

横波

橫波,又稱為高低波,是介質振動方向和波行進方向垂直的一種波。若此波沿著x軸移動,則介質的振動方向為与x轴垂直的方向上。舉例來說繩波就是一種橫波。水波在外表看起來具有橫波的樣子,但實際上水分子的振動並非單純的與波前進的方向垂直或平行,因此並不適合討論其為橫波或縱波,其形成是高低起伏的波形。 地震时产生的橫波的傳遞速率小於纵波(縱波包括聲波和某些地震引起的震波(P波),其特徵為介質粒子移動方向和行進方向平行)。.

新!!: 干涉 (物理学)和横波 · 查看更多 »

機率幅

在量子力學裏,機率幅,又稱為量子幅,是一個描述粒子的量子行為的複函數。例如,機率幅可以描述粒子的位置。當描述粒子的位置時,機率幅是一個波函數,表達為位置的函數。這波函數必須符合薛丁格方程。 一個機率幅\psi\,\!的機率密度函數是 \psi^*\psi\,\!,等於 \mid\psi\mid^2\,\!,又稱為機率密度。在使用前,不一定要將機率密度函數歸一化。尚未歸一化的機率密度函數可以給出關於機率的相對大小的資訊。 假若,在整個三維空間內,機率密度 \mid\psi\mid^2\,\!是一個有限積分。那麼,可以計算一個歸一常數 c\,\!,替代 \psi\,\!為 c\psi\,\!,使得有限積分等於1。這樣,就可以將機率幅歸一化。粒子存在於某一個特定區域V\,\!內的機率是 \mid\psi\mid^2\,\!在區域V\,\!的積分。這句話的含義是,根據量子力學的哥本哈根詮釋,假若,某一位觀察者試著測量這粒子的位置。他找到粒子在 \varepsilon\,\!區域內的機率 P(\varepsilon)\,\!是 不光局限於粒子觀,機率幅的絕對值平方可以詮釋為「在某時間、某位置發生相互作用的概率」。.

新!!: 干涉 (物理学)和機率幅 · 查看更多 »

波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

新!!: 干涉 (物理学)和波 · 查看更多 »

波动性

波动性(又稱“波幅”),指金融资产在一定时间段的变化性。通常以一年内涨落的标准差来测量。 光的波动性指两列光波在空中相遇时发生叠加,在某些区域总加强,某些区域减弱,相间的条纹或者彩色条纹的现象。 金融市场中,投资的波动性与其风险有着密切的联系。.

新!!: 干涉 (物理学)和波动性 · 查看更多 »

波峰

波峰(Wave crest)是指波在一個波長的範圍內,波幅的最大值,與之相對的最小值則被稱為波谷。橫波突起的最高點稱為波峰,陷下的最低點稱為波谷。縱波最密集的部分稱為波峰,最稀疏的部分稱為波谷。.

新!!: 干涉 (物理学)和波峰 · 查看更多 »

波形

波形(waveform)表示信号的形状、形式,这个信号可以是波在物理介质上的移动,也可以是其他物理量的抽象表达形式。 在许多情况里,波传播的介质的形式不能直接用肉眼观察。在这些情况中,“波形”这个术语指相应物理量在时间或空间上分布情况的图形抽象。作为最典型的例子,示波器可以被用来在显示设备上表现出两个探头之间电压的变化情况。将这个概念扩展后,波形也可以描述任何物理量在时间上变化所对应函数的曲线图形。.

新!!: 干涉 (物理学)和波形 · 查看更多 »

波列

在一維空間裡,波列(wavetrain)是一種延伸與移動於空間的波動,在任意時刻,可以用周期函數來描述。諧波是用調和函數來描述的無限延伸波列。普通光源是由很多微小的原子組成,這些原子重複地被激發至能量較高的激發態,然後躍遷至能量較低的穩定態;在這持續大約10-8秒的過程中,會發射出有限延伸光波列,只含有有限個光波振盪。普通光源所發射出的光波是由很多有限波列組成,這光波的相干性最多不超過10-8秒。.

新!!: 干涉 (物理学)和波列 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

新!!: 干涉 (物理学)和波函数 · 查看更多 »

波前

#重定向 波阵面.

新!!: 干涉 (物理学)和波前 · 查看更多 »

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

新!!: 干涉 (物理学)和波粒二象性 · 查看更多 »

波谷

波峰是指横波在正交于传递方向上极大值。与之相对的极小值则被称为波谷。因为极小和极大只是取决于正交于传递方向上的坐标方向而言,故两者合称为极值。对于常见的正弦波来说,两者距离平均值(零相位)的绝对值相等。对于周期性的传递波(比如正弦波)来说,两者的差称为该波的振幅。.

新!!: 干涉 (物理学)和波谷 · 查看更多 »

激光

雷射(LASER),中國大陸譯成激--光,在港澳台又音譯为镭--射或雷--射,是“通过受激辐射产生的光放大”(Light Amplification by Stimulated Emission of Radiation)的缩写,指通过刺激原子导致电子跃迁释放辐射能量而产生的具有同調性的增强光子束,其特点包括发散度极小,亮度(功率)可以达到很高等。產生激光需要“激發來源”,“增益介質”,“共振结构”這三個要素。.

新!!: 干涉 (物理学)和激光 · 查看更多 »

振动

振动(vibration),指一个物体相对于静止参照物或处于平衡状态的物体的往复运动。一般来说振动的基础是一个系统在两个能量形式间的能量转换,振动可以是周期性的(如单摆)或随机性的(如轮胎在碎石路上的运动)。.

新!!: 干涉 (物理学)和振动 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

新!!: 干涉 (物理学)和振幅 · 查看更多 »

惠更斯-菲涅耳原理

惠更斯-菲涅耳原理(Huygens–Fresnel principle)是研究波传播问题的一种分析方法,因荷蘭物理學者克里斯蒂安·惠更斯和法国物理学者奥古斯丁·菲涅耳而命名。這个原理同时适用于远场极限和近场衍射。 惠更斯-菲涅耳原理能夠正確地解釋與計算波的傳播。基爾霍夫衍射公式給衍射提供了一個嚴格的數學基礎,這基礎是建立於波動方程式和格林第二恒等式。從基爾霍夫衍射公式,可以推導出惠更斯-菲涅耳原理。菲涅耳在惠更斯-菲涅耳原理裏憑空提出的假定,在這推導過程中,會自然地表現出來。 舉一個簡單例子來解釋這原理。假设有两个相邻房间A、B,这两个房间之間有一扇敞开的房门。当声音从房间A的角落裏发出时,则处於房间B的人所听到的这声音有如是位於门口的波源传播而来的。對於房间B的人而言,位於门口的空气振动是声音的波源。 光波对於狹縫或孔徑的衍射也可以用這方式處理,但直观上并不明显,因为可见光的波长很短,因此很难观测到这种效应。.

新!!: 干涉 (物理学)和惠更斯-菲涅耳原理 · 查看更多 »

斯涅尔定律

光波從一種介質傳播到另一種具有不同折射率的介質時,會發生折射現象,其入射角與折射角之間的關係,可以用斯涅尔定律(Snell's Law)來描述。斯涅尔定律是因荷兰物理学家威理博·斯涅尔而命名,又稱為「折射定律」。 在光學裏,光線跟蹤科技應用斯涅尔定律來計算入射角與折射角。在實驗光學與寶石學裏,這定律被應用來計算物質的折射率。對於具有負折射率的负折射率超材料(metamaterial),這定律也成立,允許光波因負折射角而朝後折射。 斯涅尔定律表明,當光波從介質1傳播到介质2時,假若兩種介質的折射率不同,則会发生折射現像,其入射光和折射光都處於同一平面,稱為「入射平面」,并且与界面法线的夹角满足如下关系: 其中,n_1、n_2分别是两種介质的折射率,\theta_1和\theta_2分别是入射光、折射光与界面法线的夹角,分别叫做「入射角」、「折射角」。 這公式稱為「斯涅尔公式」。 斯涅尔定律可以從費馬原理推導出來,也可以從惠更斯原理、平移對稱性或馬克士威方程組推導出來。.

新!!: 干涉 (物理学)和斯涅尔定律 · 查看更多 »

摩尔纹

#重定向 莫列波紋.

新!!: 干涉 (物理学)和摩尔纹 · 查看更多 »

愛德華·莫立

没有描述。

新!!: 干涉 (物理学)和愛德華·莫立 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 干涉 (物理学)和散射 · 查看更多 »

態向量

在量子力學裏,一個量子系統的量子態可以抽象地用態向量來表示。態向量存在於內積空間。定義內積空間為增添了一個額外的內積結構的向量空間。態向量滿足向量空間所有的公理。態向量是一種特殊的向量,它也允許內積的運算。態向量的範度是1,是一個單位向量。標記量子態\psi\,\!的態向量為|\psi\rangle\,\!。 每一個內積空間都有單範正交基。態向量是單範正交基的所有基向量的線性組合: 其中,|e_1\rangle,\,|e_2\rangle,\,\dots,\,|e_n\rangle\,\!是單範正交基的基向量,n\,\!是單範正交基的基數,c_1,\,c_2,\,\dots,\,c_n\,\!是複值的係數,是|\psi\rangle\,\!的分量,c_i\,\!是|\psi\rangle\,\!投射於基向量|e_i\rangle\,\!的分量,也是|\psi\rangle\,\!處於|e_i\rangle\,\!的機率幅。 換一種方法表達: \end\,\!。 在狄拉克標記方法裏,態向量|\psi\rangle\,\!稱為右矢。對應的左矢為\langle\psi|\,\!,是右矢的厄米共軛,用方程式表達為 其中,\dagger\,\!象徵為取厄米共軛。 設定兩個態向量|\alpha\rangle.

新!!: 干涉 (物理学)和態向量 · 查看更多 »

托马斯·杨

湯瑪士‧楊格(Thomas Young,),亦称“杨氏”,是一位英国科学家、医生、通才,曾被譽為「世界上最後一個什麼都知道的人」。.

新!!: 干涉 (物理学)和托马斯·杨 · 查看更多 »

普朗克黑体辐射定律

在物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck's law, Blackbody radiation law)描述,在任意温度T\,下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之間的关系。在这裏,辐射率是频率\nu的函数: 如果写成波长的函数,則辐射率为 其中,I_或I_是輻射率,\nu \,是频率,\lambda \,是波长,T \,是黑体的温度,h \,是普朗克常数,c \, 是光速,k \, 是玻尔兹曼常数。 注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而I_(\nu,T)和I_(\lambda,T)并不等价。它们之间存在有如下关系: 通过单位频率间隔和单位波长间隔之间的关系,这两个函数可以相互转换: 在低頻率極限,普朗克定律趨於瑞利-金斯定律,而在高頻率極限,普朗克定律趨於維恩近似。 馬克斯·普朗克於1900年發展出普朗克定律,並從實驗結果計算出所涉及的常數。後來,他又展示,當表達為能量分布時,該分布是電磁輻射在熱力學平衡下的唯一穩定分布。當表達為能量分布時,該分布是熱力學平衡分布家族的成員之一,其它成員為玻色–愛因斯坦分布、費米–狄拉克分布、麦克斯韦-玻尔兹曼分布等等。.

新!!: 干涉 (物理学)和普朗克黑体辐射定律 · 查看更多 »

重定向到这里:

干涉儀波的干涉相消干涉相长干涉马赫-曾德尔干涉仪马赫-秦特干涉仪

传出传入
嘿!我们在Facebook上吧! »