徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

1 + 2 + 4 + 8 + …

指数 1 + 2 + 4 + 8 + …

在数学领域,1 + 2 + 4 + 8 + … 是一个无穷级数,它的每一项都是2的幂。作为几何级数,它以 1 为首项,2 为公比。 作为实数级数,他发散到无穷,所以在一般意义下它的和不存在。 如果以代數運算的方式來計算這個數列的和,雖然可以得到∞以及-1這兩個值,但這必須在更廣泛的意義中才能成立。 在历史和数学教育,是正项发散几何级数的一个基本例子。许多结果和争论引出了许多类似级数,其他的例子如。.

18 关系: 发散几何级数发散级数复平面实数不动点幂级数切萨罗求和级数莫比乌斯变换萊昂哈德·歐拉解析开拓黎曼球面无穷收敛半径数学数学史数学教育2的幂

发散几何级数

数学中,幾何級數 是发散的,当且仅当 | r | ≥ 1,此稱為發散幾何級數。有时需要考虑发散级数的求和,通常利用与收敛情况相同的公式来计算发散几何级数的和:.

新!!: 1 + 2 + 4 + 8 + …和发散几何级数 · 查看更多 »

发散级数

发散级数(Divergent Series)指(按柯西意义下)不收敛的级数。如级数1 + 2 + 3 + 4 + \cdots和1 - 1 + 1 - 1 + \cdots ,也就是说该级数的部分和序列没有一个有穷极限。 如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数 调和级数的发散性被中世纪数学家奥里斯姆所证明。.

新!!: 1 + 2 + 4 + 8 + …和发散级数 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: 1 + 2 + 4 + 8 + …和复平面 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 1 + 2 + 4 + 8 + …和实数 · 查看更多 »

不动点

在数学中,函数的不动点或定点是指被这个函数映射到其自身一个点。例如,定义在实数上的函数f, 则2是函数f的一个不动点,因为f(2).

新!!: 1 + 2 + 4 + 8 + …和不动点 · 查看更多 »

幂级数

在数学中,幂级数(power series)是一类形式简单而应用广泛的函数级数,变量可以是一个或多个(见“多元幂级数”一节)。单变量的幂级数形式为: 其中的c和a_0,a_1,a_2 \cdots a_n \cdots是常数。a_0,a_1,a_2 \cdots a_n \cdots称为幂级数的系数。幂级数中的每一项都是一个幂函数,幂次为非负整数。幂级数的形式很像多项式,在很多方面有类似的性质,可以被看成是“无穷次的多项式”。 如果把(x-c)看成一项,那么幂级数可以化简为\sum_^\infty a_n x^n 的形式。后者被称为幂级数的标准形式。一个标准形式的幂级数完全由它的系数来决定。 将一个函数写成幂级数\sum_^\infty a_n \left(x-c \right)^n的形式称为将函数在c处展开成幂级数。不是每个函数都可以展开成幂级数。 幂级数是分析学研究的重点之一,然而在组合数学中,幂级数也占有一席之地。作为母函数,由幂级数概念发展出来的形式幂级数是许多组合恒等式的来源。在电力工程学中,幂级数则被称为Z-变换。实数的小数记法也可以被看做幂级数的一种,只不过这里的x被固定为\frac。在p-进数中则可以见到x被固定为10的幂级数。.

新!!: 1 + 2 + 4 + 8 + …和幂级数 · 查看更多 »

切萨罗求和

切薩羅求和(Cesàro summation)是由義大利的數學家恩納斯托·切薩羅(Ernesto Cesàro)發明,是計算無窮級數和的方式。若一級數收斂至α,則其切薩羅和存在,其值為 α,而發散級數也可以用切薩羅求和的方式,計算出切薩羅和。.

新!!: 1 + 2 + 4 + 8 + …和切萨罗求和 · 查看更多 »

级数

在数学中,一个有穷或无穷的序列u_0,u_1,u_2 \cdots的元素的形式和S称为级数。序列u_0,u_1,u_2 \cdots中的项称作级数的通项。级数的通项可以是实数、矩阵或向量等常量,也可以是关于其他变量的函数,不一定是一个数。如果级数的通项是常量,则称之为常数项级数,如果级数的通项是函数,则称之为函数项级数。常见的简单有穷数列的级数包括等差数列和等比数列的级数。 有穷数列的级数一般通过初等代数的方法就可以求得。如果序列是无穷序列,其和则称为无穷级数,有时也简称為级数。无穷级数有发散和收敛的区别,称为无穷级数的敛散性。判断无穷级数的敛散性是无穷级数研究中的主要工作。无穷级数在收敛时才會有一个和;发散的无穷级数在一般意义上没有和,但可以用一些别的方式来定义。 无穷级数的研究更多的需要数学分析的方法来解决。无穷级数一般写作\textstyle a_1 + a_2 +a_3+ \cdots、\textstyle \sum a_n或者\textstyle \sum_^\infty a_n,级数收敛时,其和通常被表示为\textstyle \sum_^\infty a_n。.

新!!: 1 + 2 + 4 + 8 + …和级数 · 查看更多 »

莫比乌斯变换

在几何学--, 莫比乌斯变换是一类从黎曼球面映射到自身的函数。用扩展复平面上的复数表示的话,其形式为: 其中 z, a, b, c, d 为满足 ad − bc ≠ 0的(扩展)复数。 莫比乌斯变换也可以被分解为以下几个变换:把平面射影到球面上,把球体进行旋转、位移等任何变换,然后把它射影回平面上。 莫比乌斯变换是以数学家奥古斯特·费迪南德·莫比乌斯的名字命名的,它也被叫做单应变换(homographic transformation)或分式线性变换(linear fractional transformation)。.

新!!: 1 + 2 + 4 + 8 + …和莫比乌斯变换 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

新!!: 1 + 2 + 4 + 8 + …和萊昂哈德·歐拉 · 查看更多 »

解析开拓

#重定向 解析延拓.

新!!: 1 + 2 + 4 + 8 + …和解析开拓 · 查看更多 »

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

新!!: 1 + 2 + 4 + 8 + …和黎曼球面 · 查看更多 »

无穷

無窮或無限,來自於拉丁文的「infinitas」,即「沒有邊界」的意思。其數學符號為∞。它在科學、神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。 在神學方面,根據書面記載無窮這個符號最早被用於某些秘密宗教,通常代表人類中的神性,而書寫此符號時兩圓的不對等代表人神間的差距,例如神學家邓斯·司各脱(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。 在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、、羅素悖論、超實數、射影幾何、擴展的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。.

新!!: 1 + 2 + 4 + 8 + …和无穷 · 查看更多 »

收敛半径

收敛半径是数学中与幂级数有关的概念。一个幂级数的收敛半径是一个非负的扩展实数(包括无穷大)。收敛半径表示幂级数收敛的范围。在收敛半径内的紧集上,幂级数对应的函数一致收敛,并且幂级数就是此函数展开得到的泰勒级数。但是在收敛半径上幂级数的敛散性是不确定的。.

新!!: 1 + 2 + 4 + 8 + …和收敛半径 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 1 + 2 + 4 + 8 + …和数学 · 查看更多 »

数学史

数学史的主要研究对象是历史上的数学发现,以及调查它们的起源,或更广义地说,数学史就是对过去的数学方法与数学符号的探究。 数学起源于人类早期的生产活动,为古中国六艺之一,亦被古希腊学者视为哲学之起点。數學最早用於人們計數、天文、度量甚至是貿易的需要。這些需要可以簡單地被概括為數學對結構、空間以及時間的研究;對結構的研究是從數字開始的,首先是從我們稱之為初等代數的——自然數和整數以及它們的算術關係式開始的。更深層次的研究是數論;對空間的研究則是從幾何學開始的,首先是歐幾里得幾何和類似於三維空間(也適用於多或少維)的三角學。後來產生了非歐幾里得幾何,在相對論中扮演著重要角色。 在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。目前最古老的数学文本是《普林顿 322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。 在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μάθημα(mathema),意为“(被人们学习的)知识学问”。希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。中国数学做了早期贡献,包括引入了位值制系统。如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。 从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。17世纪变数概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 从古代到中世纪,数学发展的历史时期都伴随着数个世纪的停滞,但从16世纪以来,新的数学发展伴随新的科学发展,让数学不断加速大步前进,直至今日。.

新!!: 1 + 2 + 4 + 8 + …和数学史 · 查看更多 »

数学教育

数学教育是研究数学教学的实践和方法的学科。而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。数学教育是现代社会激烈争论的主题之一。这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。这方面最重要的国际组织是。.

新!!: 1 + 2 + 4 + 8 + …和数学教育 · 查看更多 »

2的幂

2的幂是指符合型式,而也是整數的數,也就是底數為2,指數為整數 的幂。 在有些情形下,會將限制在正整數及零的範圍內,因此2的幂包括1、2以及2自乘多次的乘積。 因為2是二進制的底數,因此在常出現二進制的電腦科學中,2的幂也很常見。若將2的幂用二進制表示,會是100…000、0.00…001或是1的形式,類似用十進制表示的情形。.

新!!: 1 + 2 + 4 + 8 + …和2的幂 · 查看更多 »

重定向到这里:

1+2+4+8+……

传出传入
嘿!我们在Facebook上吧! »